
REFERENCE MANUAL

Z8671
SINGLE-CHIP INTERPRETER
BASIC/DEBUG SOFTWARE

Preface

This manual describes the Basic/Debug interpreter, a
version of Tiny Basic resident in the internal ROM of the
ZS671 Single-Chip Interpreter. The first three sections
describe Basic/Debug's design considerations, its self
contained editor and language syntax. Sections 4 and 5
give interactive debugging instructions and suggest program
ming methods that speed up execution time and conserve memory
space. The final sections discuss the memory environment and
Basic/Debug's interactions with interrupts and external
Input/Output drivers.

Because Basic/Debug is a subset of Dartmouth Basic, most
of the material covered in this manual will be familiar to
Basic programmers. However, Basic/Debug has greater
responsibilities than other Basic interpreters. The ZS671
has no other operating system software and therefore depends
heavily on Basic/Debug to interact with its environment.
Because the Basic/Debug interpreter is stored in the
internal ROM of the ZS67l, it is defined within the unique
hardwar~ characteristics of the microcomputer chip.

This manual introduces the ZS671 hardware environment
by describing Basic/Debug's interfaces with machine language
code, the memory environment and interrupts. However, to
fully utilize the ZS671, more detailed technical knowledge is
needed. For example, before a Basic/Debug program can access
a machine language subroutine, an assembly language version must
be developed, assembled, tested, and stored in the ZS6?1 system
memory. These processes are described in the ZS PLZ/ASM
Language Manual (part number 03-3023-02). Three other helpful
documents are The ZS Microcomputer Preliminar Technical Manual
(part number 0 - , e Pro uct pec1 1cat10n part
number 00-21S0-0l), and the app11cation note ent1tled A Seven-Chip
Computer (part number 00-2151-01).

SECTION 1

SECTION 2

SECTION 3

Contents

GENERAL INFORMATION

1.1
1.2
1.3
1.4

Design Considerations •••••••••••••..••••••.
Basic/Debug's Execution Modes ••••••••••••••
Program Line Syntax ••••••••••••••••••••••••
The Basic/Debug Editor •••••••••••••••••••••

ELEMENTS OF A BASIC/DEBUG EXPRESSION

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

Introduction •••••••••••••••••••••••••••••••
Numbe r Hand 1 i ng ••••••••••••••••••••••••••••
Constants ••••••••••••••••••••••••••••••••••
Variables•....•......
Oper.ators
Memory References - Addresses ••••••••••••••
Functions•..........................

2.7.1
2.7.2

Log ica1
Machine

Functions •••••••••••••••••••
Language Functions ••••••••••

Formal Syntax for Expressions ••••••••••••••

BASIC/DEBUG STATEMENT DEFINITIONS

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

Introduction ••••••••••••• ~ •••••••••••••••••
The GO@ Command •••••••••••••••••••••••••
The GOSUB Command .•••••••••••••••••.•••••••
The GOTO Command •••••••••••••••••••••••••••
The IF/THEN Command •••••••••••••••••••.••••
The INPUT and IN Commands ••••••••••••••••••
The LET Comma·nd ••••••••••••••••••••••••••••
The LIST Command ••••••••••••••••••••••••••.
The NEW Command ..••••••••.•...•••..•.••••..
The PR INT Comm and ••••••••••••••••••••••••••
The REM Command ••••••••••••••••••••••••••••
The RETURN Command •••••••••••••••••••••••••
The RUN Command ••••••••••••••••••••••••••••
The STOP Command •••••••••••••••••••••••••••

CONTENTS (cont.)

SECTION 4 ERRORS AND INTERACTIVE DEBUGGING ••••••••••••••••

4.1 Errors•..•....•...•....••.........
4.2 Interactive Debugg ing ••••••••••••••••••••••

SECTION 5 EXECUTION SPEED V.S. MEMORY SPACE •••••••••••••••

5.1 Introduction •••••••••••••••••••••••••••••••
5.2 Conserving Memory Space ••••••••••••••••••••
5.3 Improving Execution Time .••••••••••••••••••

SECTION 6 THE MEMORY ENVIRONMENT ••••••••••••••••••••••••••

6.1 Memory Structure •••••••••••••••••••••••••••
6.2 Initialization and Automatic Start-up ••••••
6.3 Program Format ••••••••••••.••••••••••••••••
6.4 The Top Page of RAM ••••••••••••••••••••••••
6.5 Pointer Registers - RAM System •••••••••••••
6.6 Register Management for a No-RAM System •••••
6.7 The Memory Map •••••••••••••••••••••••••••••

SECTION 7 THE CONSTANT BLOCK, INTERRUPTS, AND I/O DRIVERS •

7.1 The Constant Block ••.••••••••••••••••••••••
7.2 Interrupts eo a •••••••••••••••••••••••••

7.3 I/O Drivers •••••••••••••••••••••.•••••.••••
7.4 Binary I/O •••••••••••••••••.••••••••••.••••

APPENDI X A SYNTAX SUMMARY ••••••••••••.••.••••••••••••••••••

APPENDIX B BAUD RATE SWITCH SETTINGS •••••••••••••••••••••••

APPENDIX C ERROR CODES SUMMARy •••...••••....••.•.•.•.•.....

Section 1
General Information

1.1 Design Considerations

The original Basic developed at Dartmouth College is
designed for people who have no previous experience with
computers. Because Basic/Debug is a descendant of Dartmouth
Basic, it has similar syntax and is easy to learn and use.
However, Basic/Debug is designed specifically for process
control. Some Dartmouth Basic features which are inappropriate
to Z8671 applications have been left out of Basic/Debug. Among
these are trigonometric and other transcendental functions,
array and character string handling, and fractional numbers.
To further conserve memory space, all redundant commands and
statement types which can be duplicated by combining other
commands have also been eliminated.

However, Basic/Debug allows fast hardware tests,
examination and modification of any memory location or
input/output port, bit by bit examinations of any port, bit
manipulation, and logical operations. The Basic/Debug
interpreter can process both decimal and hexadecimal values for
input and output. A Basic/Debug program may also access
machine language code as either a subroutine or a user-defined
function.

Once the application program has been developed and
tested, the Z867l system may be converted from development to
automatic mode. When the developed program is stored in a
special location in memory, the Basic/Debug interpreter will
execute it every time the system is powered up or reset.

1.2 Basic/Debug's Execution Modes

Basic/Debug executes commands in one of two modes: run or
immediate. The system is ready to accept a command when the
Basic/Debug prompt, a colon, appears at the left edge on a new
line at the terminal. To give an instruction in the immediate
mode, enter a command keyword, for example, PRINT. The command
is executed when the carriage return key is pressed. The
command PRINT will leave one line blank on the terminal before
the prompt appears on a new line.

Programs are edited and interactively debugged in the
immediate mode. Some Basic/Debug commands, such as RUN, LIST,
and NEW, are used almost exclusively in the immediate mode.
Others, such as GOTO and LET, are used in both modes.

To enter the run mode, enter the command RUN in the
immediate mode. If there is a program in memory, it is
executed. The system returns to the immediate mode when
program execution is complete or interrupted by an error.

1.3 Program Line Syntax

A program is a series of instructions which, when executed
sequentially by the computer, accomplishes a specific task. It
is entered into memory one line at a time. This section
describes the elements of a program line as the computer reads
them from left to right. A program line consists of a line
number and a command statement, as shown below:

100 PRINT "HELLO"

The line number indicates that this instruction is part of
a program and should not be executed immediately, so
Basic/Debug stores the line in memory. Line numbers also
indicate the sequence in which the instructions are to be
executed. Therefore, if other lines are already stored in
memory, Basic/Debug inserts the new line in its numerical place
among them. Only values in the range 1 to 32767 are accepted
as valid line numbers.

At the terminal device, Basic/Debug separates the line
number from the command statement by one space. In memory,
however, no space is stored between the line number and the
statement. Therefore, if more than one space is entered
between the line number and the statement at the terminal,
Basic/Debug appears to ignore the extras. If no space is
entered, Basic/Debug inserts one before listing the line at the
terminal.

Several statements may follow a single line number if they
are separated by colons. Packing several commands on one line
conserves memory space. The number of commands in the line is
not limited, but the line may not contain more than 130
characters.

Basic/Debug ignores the distinction between upper and
lower case letters. Therefore PRINT, PrInT and print are all
equivalent to Basic/Debug. But in this manual, all example
statements are shown in upper case for clarity.

Generally, the command statement has two parts: the
command keyword and an argument. In the example line above,
PRINT is the command keyword and "HELLO" is the argument.
However, Basic/Debug recognizes a wide variety of statements in
which either keywords or arguments are omitted, as shown in the
following list of valid statements:

PRINT
IF C <> USR{A) %500
@%1020 = 100
"THE ANSWER IS";X

Basic/Debug recognizes fifteen keywords. Each specifies a
statement type which performs one of three actions: assignment
to a variable (LET), input or output (INPUT, IN, PRINT), or
control flow (IF, GOTO, GOSUB, RETURN, GO@). In the sample
program line above, a space separates the keyword PRINT from
the argument "HELLO". Although it makes the statement easier
to read, the space is unnecessary. Within the statement
portion of a program line, Basic/Debug ignores all spaces. Any
spaces entered remain in the program and take up memory space,
however, Basic/Debug does not recognize that spaces delimit or
separate parts of the statement. It looks for other clues
which are specific to the command keyword. These delimiters
are discussed as each command is defined in Section 3.

The argument portion of a statement may be an expression
or, in some cases, another statement. An expression specifies
a number or a computation resulting in a number. Elements of
expressions are discussed in Section 2. Below are examples of
valid expressions:

(4096)
A*B*C
@%l020
iG*lOO

1.4 The Basic/Debug Editor

Basic/Debug supports interactive debugging with a
self-contained line editor. It also allows elimination of
typing and other errors as a program is entered. Editing is
done in the immediate mode. To print a program currently
contained in memory, give the command LIST. Then examine the
program and make changes and additions using the techniques
described below.

Basic/Debug stores program lines in line number sequence.
If a line is typed with the same number as a line already in
memory, the new line replaces the old one. If only the line
number is entered, the line is deleted from memory. Once a
line is stored in memory, the only way to change it is to
retype the line.

Until the carriage-return key is pressed at the end of the
line, the characters entered are temporarily stored in a line
buffer. If an error is detected in a line before it is stored
in memory, correct it by backspacing through the line buffer to

1-3

the mistake and retyping. Backspace by pressing the backspace
key or by holding down the control key and pressing H. Each
backspace keystroke deletes one character from the line buffer.
If more backspaces are entered than there are characters in the
line buffer, Basic/Debug deletes the whole line and retypes the
prompt on the next line.

If it is necessary to delete a whole line before entering
it in memory, it is quicker to press the escape key than to
backspace through the line buffer. An escape keystroke cancels
the contents of ihe line buffer.

Although the editor is most useful for changing program
lines, it can correct an immediate command before it is
executed. It can also correct any user input required during a
program run. The codes Basic/Debug recognizes for backspace
and cancel are stored in the constant block and may be changed
to support a special terminal or application. Section 7
describes how to alter the constant block.

1-4

Section 2
Elements of a Basic/Debug Expression

2.1 Introduction

Expressions represent the numeric values Basic/Debug needs
to perform a task. An expression consists of one or more of
the following elements:

• constants

• variables

• operators

• memory references

• function calls

The elements in a single expression are evaluated together
when the statement is executed. The evaluation produces a
single numeric value to be used in the execution of the
instruction.

2.2 Number Handling

All calculations are performed in two eight-bit registers,
require sixteen-bit values, and return sixteen-bit results.
Basic/Debug adds a high-order byte of zeroes to anyone-byte
value before the calculation takes place. When a result
exceeds sixteen bits, it is truncated and the excess
significant bits are discarded.

All numeric values are internally represented in
sixteen-bit binary two's complement form. In two's complement
form, a negative number -n is represented by the bit pattern
for 65536 - n. Therefore, a negative number has its high order
bit turned on.

Numerical values range from -32768 to +32767. If a
computation results in a value beyond the negative range, the
answer is printed as a positive number. If a computation
result is highgr than the positive range, a negative number is
printed. Table 2-1 shows examples of constants beyond the
normal printing range of Basic/Debug.

2-1

Table 2-1. Basic/Debug Numeric Representation

Binary Hex Unsigned Signed
Decimal Decimal

0000 0000 0000 0000 0000 0 0
0000 0000 0000 0001 0001 1 1
1111 1111 1111 1111 FFFF 65535 -1
0111 1111 1111 1111 7FFF 32767 32767
1000 0000 0000 0000 8000 32768 -32768
1000 0000 0000 0001 8001 32769 -32767
0000 0001 0000 0000 0100 256 256
0000 0010 0000 0000 0200 512 512

Hexadecimal values are used frequently for addressing
because hardware boundaries often occur on even hex addresses.
Unsigned integers between a and 65536 may be entered to address
memory locations. However, only values in the range of +32767
to -32768 are printed normally at the terminal. A method for
printing values beyond the range is presented in Section 2.5.

2.3 Constants

A constant is a value that does not change during the
program run and must be represented by a number. In
Basic/Debug, a constant may be either a decimal or a
hexadecimal value. The digits used to represent hexadecimal
values are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.
The hexadecimal value A is equivalent to the decimal number 10.
10 in hexadecimal is equal to 16 in decimal. Basic/Debug
requires a signal character, %, before a hexadecimal value.
Any number not preceded by a percent sign is assumed to
represent a decimal value.

A negative number is indicated by the minus sign, "-"
Technically, this combines a constant with an operator to make
an expression, and Basic/Debug treats it as such. This concept
is important when omitting the PRINT keyword from a print
statement (see Section 3.10).

Basic/Debug recognizes only whole numbers. Fractions
cannot be entered, and the fractional part of any result is
discarded. The following are examples of valid decimal and
hexadecimal constants:

o
123
256
32766
32768

%
%7B
%100
%7FFE
%8000

2-2

2.4 Variables

A variable is a two-byte location where a numeric value
may be stored. It is referenced by a single letter variable
name. A variable may be changed or updated with a new value at
any time.

Basic/Debug supports 26 variables. Each letter of the
alphabet is used as a variable name. Variable storage is not
cleared before a program is run, so it is possible to pass
values from one program to another in variable storage.

The memory location of variable storage is fixed during
the power-on-reset procedure of the Z8671 and depends upon
the memory configuration available at that time. Variables are
usually stored in the top page of RAM. Within the page,
variables reside in locations 34-85. Two bytes are assigned to
each variable. For example, variable A is stored in location
34-35, and variable Z is stored in lO'cation 84-85.

However, some Z8671 systems do not have any RAM. In this
case, the variables are stored in Z8671 registers 34-85, which are
shared with the GOSUB stack. In a No-RAM system, variables may
be destroyed by the GOSUB stack. See Section 6.6 for a description
of memory management in a No-RAM system.

2.5 Operators

An operator indicates a calculation to be perfomed when an
expression is evaluated. Basic/Debug supports two sets of
operators: arithmetic operators and relational operators.

Basic/Debug recognizes the following traditional operators
for arithmetic functions:

+

*
/

addition
subtraction
multiplication
division

Operations are performed from left to right. If all four
appear in a single expression, multiplication and division are
performed first, followed by addition and subtraction. This
may be altered by the use of parentheses. For example:

3*24-18/3+10 = 76
3*(24-18)/(3+10) = 1

Basic/Debug does not support fractional numbers, therefore, the
remainder of the division in the second line is discarded.

2-3

A special division operator, the backslash "\", does
unsigned division. It indicates that the dividend is to be
treated as an unsigned integer in the range 0 - 65535. For
example, the statement PRINT 40000\3 returns the correct
answer, 13333. But PRINT 40000/3 returns -8512 because the
signed integer for 40000 is -25536.

Because it treats the dividend as a sixteen bit positive
number, the backslash can perform a logical right shift on a
bit pattern, as shown below:

(-2)/2 = -1
(-2)\2 = 32767

An attempt to divide by a negative number with the backslash
operator gives undefined results.

The backslash operator may also be used to print values
higher than +32767. Assuming that N is a value out of normal
printing range, the following statement will print N:

PRINT N\IO; N-N\IO*IO

Relational operators specify conditional relationships in
an IF statement. The six relational operators recognized by
Basic/Debug are:

equal
<= less than or equal
< less than
<> not equal
> greater than
>= greater than or equal

2.6 Memory References - Addresses

BasiC/Debug can directly address the za671 internal
registers and all external memory. The contents of any address
may be examined and RAM may be altered. The location is specified
by a memory reference, which has two parts: a signal character
and an address value. A memory reference may be used in a
Basic/Debug expression anywhere a variable may be used.

Any byte may be referenced by placing the byte signal
character, "@", in front of the address. For example, @%1000
addresses the byte stored in location 4096. Byte references
may be used to modify a single register in the CPU, control I/O
devices, or access any memory location.

2-4

Sixteen-bit words are referenced with an address preceded
by the word signal character "1". This accesses the most
significant byte at the address given plus the least
significant byte at the next higher address. Modification of
pointer register values requires a word reference.

The address value may be a variable, a constant, a hex
value, an AND or USR function, an expression in parentheses,
or, for indirect addressing, another memory reference. An
expression is evaluated at run time and its value used as the
memory address or register number to be referenced. For
example, if the address needed depends on the value of C,
Basic/Debug can perform the calculation:

145 LET @(C*lOO) = A

Indirect addressing can vector Basic/Debug through several
addresses to find required information. For example,

PRINT lf8

The first signal character "tn indicates indirect addressing.
Register R-8 is a sixteen bit pointer. It always contains the
address of the first byte of the program in memory. To execute
this instruction, Basic/Debug finds the address in R-8, then
goes to that address and prints its contents. Pointer registers,
which are discussed in detail in Section 6, require word
references, as shown in the example above.

To modify Z8671 registers, use addresses in the range of
either 0-127 or 240-255. The Z8671 has no registers implemented
between 127 and 240. With this exception, Basic/Debug
references registers between 00 and FF (hex), and external
memory between 0100 and FFFF (hex). Do not use a word
reference at address OOFF or FFFF because such a reference
extends across internal/external memory boundaries, and returns
a non-contiguous second byte.

Memory references may be used to implement arrays. Set
aside a block of RAM to hold the array, and indicate the
address of an element of the array by adding the element number
to the array's starting address. For example, if an array of
bytes starts at COOO hex, the following statements would define
the starting address of the array and reference its elements:

A = 'COOO
@(A+J)=99
@(A+I)=@(A+J)+@(A+K)

:REM ARRAY STARTING ADDRESS
:REM ELEMENT J = 99
:REM A(I)=A(J)+A(K)

2-5

2.7 Functions

Basic/Debug supports two functions: AND, which performs a
logical AND, and USR, which calls a machine language
subroutine. These functions must be part of an expression. A
function is treated as an operand, the same as a variable,
constant, or memory reference. It does not change the order of
arithmetic operations.

2.7.1 Logical Functions

AND performs a logical AND. It can be used to mask, turn
off, or isolate bits.

AND (expression, expression)

The two expressions are evaluated, then their bit patterns
are ANDed together. For example, AND (3,6) returns 2. If only
one value is included in the parentheses, it is ANDed with
itsel f.

To perform a logical OR, complement the AND function by
subtracting each element from -1. For example, the function
below is equivalent to the OR of A and B:

-l-AND(-l-A, -I-B)

The arithmetic sum may also be used for the logical OR
operation if the bits to be added are known to be previously
zero.

2.7.2 Machine Language Functions

An application often requires a subroutine which can be
performed more quickly and efficiently in machine language than
in Basic/Debug. The Z8 PLZ/ASM Language Manual (part number
03-3023-02) and the Z8 Assembler User Guide (part number
03-3048-02) describe the process of developing Z8 Assembly
Language programs.

Basic/Debug can call a machine language subroutine which
returns a value for further computation by the USR function.
To call a subroutine which returns no value, use the GO@
command described in Section 3.2.

After the machine language subroutine is assembled, store
it in memory that is not otherwise occupied by the Basic/Debug
program or stack. The available memory space is indicated by
the pointer registers described in Section 6. Use the address

2-6

of the first instruction of the subroutine as the first
argument of the USR function, as follows:

USR (%2000)

Basic/Debug executes whatever it finds at this address. If
there is no machine language routine at the location, the
result is undefined.

The address may be followed by one or two values to be
processed by the subroutine. For example:

US R (% 2000 , 256 , C)

The address and arguments are expressions separated by
commas. Basic/Debug passes the values to the subroutine in
registers RIS-19 and R20-21, and expects the resulting value to
be returned in RIS-19. This resulting value is used to finish
the evaluation of the expression.

The registers in which the arguments are passed depend on
the number of arguments inside the parentheses. For example,
the function USR(%700,A) calls the subroutine at %700 and
passes it variable A in register RIS-19. However, function
USR(%700,A,B) passes A in R20-21 and B in RIS-19. In either
case, the machine language subroutine must leave the return
value in RIS-19.

Table 2-2. USR Arguments and Registers

call

USR (%700, A, B)
USR (%700, A)

RIS-19 contains

B
A

R20-21 contains

A
A

The machine language subroutine must conform to the
following requirements: it must end with a RET (hex AF)
instruction, it must leave the value to be returned in RlS-19,
and it may use any of the free registers listed in the Memory
Map in Section 6. The register pointer is set to point to
R16-31 on entry to the routine, so the arguments may be fetched
from working registers r2-r3 and r4-rS' and the return value
left in r2-r3 (for a discussion of the working register feature
of the Z867l refer to the Z8 Microcomputer Preliminary Technical
Manual, part number 03-3047-02).

2-7

2.8 Formal Syntax for Expressions

The syntax for Basic/Debug expressions is defined below in
a meta-language descended from Backus-Naur form. The language
follows the rules given at the beginning of Section 3.

expression

signed_expression
=) add_op term (add_op term)*

add_op

term

factor

=) '+' '- ,

=) factor (mult_op factor)*

=) '*' , I'

=) variable
=) '@' factor
=) 'r' factor
=) number

'\'

=) '%' hex number
=) AND '('-expression [',' expression] ')'
=) USR '(' address [',' argl [',' arg2]] ')'
=) '(' expression ')'

2-8

Section 3
Basic/Debug Statement Definitions

3.1 Introduction

Basic/Debug recognizes fifteen command keywords. The two
most commonly used keywords, LET and PRINT, may be omitted when
their arguments imply them. For example, a character string
enclosed in quotation marks can only be processed by a PRINT
command, so a quotation mark following a line number implies
the PRINT keyword.

The first section of each of the following command
descriptions defines command syntax. The meta-language used to
define the syntax follows the rules below:

Syntactic constructs are denoted by lower case English
words or phrases not enclosed in any special characters.
Examples are command, stmnt, and gosub_stmnt.

The basic symbols of the language are keywords, written in
upper case, and special characters, enclosed in quote
marks. Examples are',' LET 'f' NEW.

Possible repetition of a construct is indicated by
appending either a '+' indicating one or more occurrences,
or a '*', indicating zero or more occurrences. For
example, the definition of number as digit+ means that a
number consists of one or more digits.

Parentheses group a number of constructs together So that
a repetition symbol (+ or *) may be applied to the group.

Square brackets denote optional items. The construct
within the brackets may appear either zero or one time.

The vertical bar' I' signifies that one of several
alternate constructs may be specified.

Curly brackets, '{' and 'l', surround an English
description of an otherwise indescribable construct.

The second section of each description lists sample
statements which demonstrate the variety of commands possible
within the syntax. The third section describes any special
features of the command. The commands are listed in
alphabetir.al order for easy reference. Statement syntax is
summarized in Appendix A.

3-1

GO@

Syntax

go_stmnt =) GO '@' address [',' arg_l [',' arg_2]]

address =) expression

arg_l =) expression

arg_2 =) expression

Examples:

GO@%EOOO, A, B
GO@%700

The GO@ command unconditionally branches to a machine
language subroutine. It may only be used when the subroutine
returns no value.

The first argument is the address of the first byte of the
subroutine. The last two optional arguments are used to pass
values to the subroutine. Unlike the USR function defined in
Section 2.7.2, the contents of R18-19 are discarded and no
value is returned. Otherwise, GO@ passes arguments to the
subroutine in the same way USR does, according to the following
table:

Table 3-1. GO Arguments and Registers

call R18-19 contains R20-21 contains

GO @%700, A, B B A
GO @%700, A A A

3-2

Syntax:

gosub_stmnt =) GOSUB expression

Examples:

GOSUB 50
GOSUB C
GOSUB B*lOO

Often an application requires that a few lines of code be
executed at several points in the program. Rather than repeat
these lines at each location, isolate them at the beginning of
the code. This subroutine may be called at any time during the
program run by the GOSUB command.

Unlike Dartmouth Basic, the item following the keyword
GOSUB may be either the number of the first line of subroutine
or an expression which evaluates to the subrbutine line number.

The subroutine must be terminated with a RETURN
instruction. GOSUB stores the number of the next line to be
executed where RETURN can find it to restart normal sequential
execution. GOSUB must be the last instruction on its line.

One subroutine may call another. The RETURN instruction
at the end of the second subroutine returns execution to the
first subroutine. In this way, subroutines may be nested to
the depth allowed by the memory available to the GOSUB stack.

3-3

GOSUB

Gmo

Syntax:

goto_stmnt =) GOTO expression

Examples:

GOTO 100
GOTO %FF
GOTO B*lOO

GOTO unconditionally changes the sequence of program
execution. Unlike the Dartmouth Basic, Basic/Debug accepts
expressions following the keyword GOTO. This feature allows a
variable to be used to select a line number. For example, if
the variable G will equal 1, 2 or 3 when line 100, 200 or 300
respectively is to be executed, use the following instruction:

GOTO G*lOO

GOTO is often used in the immediate mode for interactive
debugging because GOTO enters the run mode. Unlike the RUN
command, GOTO can specify the line number where execution is to
begin. For example, when an error occurs and the following
message appears at the terminal:

lERROR AT LINE 4096

Line 4096 may be retried by entering the following command in
the immediate mode:

GOTO 4096

Because GOTO unconditionally changes the sequence of
execution, any statements that follow it on a program line can
not be executed. Therefore GOTO must always be the last
statement on a line.

Syntax:

if stmnt => IF expression relational op expression
[THEN] apodosis

relational op
=> '<' '> ' '<> ' '= '

apodosis => number I statement line

Examples:

IF A>B THEN PRINT "A>B"
IF A>B "A>B"
IF X=Y IF Y=Z PRINT "X=Z"
IF A<>B I=0:J=K+2:GOTO 100
IF 1=2 THEN this part never matters

'<=' '>= '

The IF/THEN command is used for conditional operations and
branches. The apodosis may be another statement, a line number
indicating another statement, or a list of statements separated
by colons. Any of these statements may be another IF. The
keyword THEN may be omitted to conserve memory space.

IF compares the value of the first expression to the value
of the second. If the relationship indicated by the relational
operator is true, then the apodosis of the instruction is
executed. If the relationship is not true, then the next
sequential instruction is executed.

There are only two conditions in which the keyword THEN
may not be eliminated. It may not be omitted if the second
expression ends with a decimal or hexadecimal constant and the
line number of a statement is used. For example:

IF X <1 THEN 1000

The above statement requires a THEN to separate the numeric
second expression from the line number. However, THEN may be
eliminated from the statement by reordering the expressions:

IF 1 > X 1000

3-5

IF/THEN

IF/THEN

The second condition in which THEN may not be omitted is
when the second expression ends with a hexadecimal constant,
and the statement part is a LET statement in which the keyword
has been omitted and the variable is between A and F. For
example:

IF Z > %1000 THEN A = Z

No number of spaces in place of the THEN will prevent the
interpretation of the variable letter as a hexadecimal value
because spaces are ignored. THEN must be included to separate
the expression from the apodosis.

3-6

Syntax:

input stmnt => INPUT variable (',' variable)*
in stront => IN variable (' " variable)*

Examples:

IN C, E, G
INPUT A

These statements first request information from the
operator with the prompt "?", then read the input values
the keyboard and store them in the indicated variables.
are two of the three commands which assign an expression
variable.

from
They
to a

Either command accepts values for a list of one or more
variables. If the user does not input as many values as are
needed, both commands repeat the prompt until the required
number of values are entered. The commands differ in the way
they handle extra values entered by the operator.

INPUT discards any values remaining in the buffer from
previous IN, INPUT, or RUN statements, and requests new data
from the operator. IN uses any values left in the buffer
first, then requests new data.

Unlike Dartmouth Basic, Basic/Debug accepts completely
general expressions as input. It also accepts variables which
have already been assigned a value. A variable assigned a
value early in the list may be used to define a variable later
in the list. For example, the statement INPUT C,A can process
lO,C*5 as valid input.

When a program requires the operator to input a list of
values, he may need to separate each item by a comma. Commas
may be omitted if they are not needed to direct interpretation.
Spaces are ignored. The following examples show how delimiters
may be used to change the interpretation of input values:

? %123,A,ND(56)
? %12 3AND (56)
? %123, AND (56)

(hex 123, variables A,N,D, decimal 56)
(hex 123A, variables N, D, decimal 56)
(hex 123, value of 56 ANDed to itself)

3-7

INPUT/IN

INPUT/IN

Because Basic/Debug has only one input line buffer, INPUT
~nd IN execute differently in the immediate and run mode. In
the immediate mode, the user response overlays and destroys the
INPUT or IN command that requested it. Consequently, no matter
how many variables are listed after the keyword INPUT, only the
first one is assigned to the input data.

However, IN may assign lists of variables and expressions
in the immediate mode if both lists are alternately included in
the command line. For example:

IN A, 10, B , 1 5, C, 20

When the above line is executed in the immediate mode,
Basic/Debug fetches the first variable, A, from the keyboard
buffer, and advances the buffer pointer. INPUT at this point
would request a new input line from the keyboard, but IN, which
uses all values in the buffer before issuing the "?" prompt,
will return to the buffer and assign the value 10 to A. The
process continues until all variables and values are used up.
If the command line is closed with a variable, the "?" prompt
is issued.

Generally, it is easier to use LET to assign values to
variables in the immediate mode.

To help the operator enter the correct number and kinds of
values, IN and INPUT are usually preceded by a PRINT statement
describing the requirements. When the PRINT statement is
terminated with a semicolon, the INPUT prompt "?" will be
listed on the same line and appear to punctuate the message.

Although Basic/Debug does not support character string
functions, the INPUT command may be used to accept a single
letter as a user response, as shown below:

100 PRINT "PLEASE TYPE YES OR NO"
110 LET N=Y-l
120 PRINT "DO YOU UNDERSTAND";
130 INPUT N
140 IF N=Y THEN PRINT "GOOD!"

In this example, the value of Y does not matter. If the
operator types Y, YES, YEAH, or YAH, then the variable N equals
Y. If the operator type N, NO, or NOT YET, then variable N is
unchanged and not equal to Y. To check for letters other than
Y or N, use an unusual value for Y, such as -32323, and check
both Y and Y+l after input.

3-8

Syntax:

let stmnt =) [LET] left_part '=' expression'

left_part =) variable I '@' factor I 'f' factor

Examples:

LET A = A+l
@ 1020 = 100
fa = %lOO*C

LET assigns the value of an expression to a variable or
memory location. The left portion of the statement may be any
alphabetic character A-Z, a memory reference, or a register
reference. The value of the expression is either stored in the
memory location, or placed in the variable's storage location,
to be used at any subsequent appearance of the variable.
Because the equal sign makes the syntax of this command unique,
the LET keyword may be omitted.

A variable's value may be re-calculated by using the same
variable on both sides of the LET assignment, as in the
incrementing statement below:

LETB=B+l

LET may be used to store values in memory by using a
memory reference on the left side of the LET assignment, as
shown below:

LET@1024=B/2

When this statement is executed, the memory reference is
calculated first, then the expression is evaluated and its
value stored. A word memory reference stores the most
significant byte in the location addressed. The least
significant byte is stored in the next higher address. Take
care when modifying internal registers or the area where the
program is stored in memory because improper changes could have
catastrophic results.

3-9

LET

LIST

Syntax:

list stmnt => LIST [starting_liner',' ending_line]]

starting_line => expression

=> expression

Examples:

LIST
LIST 200, 1000

This command is used in the interactive mode to generate n
listing of program lines stored in memory on the terminal
device. The optional line numbers specify the range of lines
to be listed. If only one number is given, only that line will
be listed. If ending line is included, only starting line
through ending line inclusive will be listed. A LIST-command
without arguments lists all the lines in the program.

The LIST command is generally used in the immediate mode,
however, it may be used in the run mode for simple text
processing. Because Basic/Debug does not examine program lines
after the line number until runtime, it can process text, as
shown in the following program:

3-10

100 REM THIS PROGRAM PRINTS A MESSAGE N TIMES
110 IF N>O THEN 200
120 : PRINT "HOW MANY TIMES";
130 : INPUT N
200 REM BEGIN LOOP
210 LET N=N-l
220 : LIST 1000, 1070
230 : IF N>O THEN 210
240 STOP

10001 This is a message saved in memory. It will be
1010lprinted when the program is RUN. If you tried to
1020lexecute lines 1000 to 1070 you would get an error
1030lmessage. But in this program, lines 1000+ are not
1040lexecuted, just LISTed.
10501
10601 (Signed)
10701

Five lines of this program are indented to show program
structure and make it easy to read. The colon prevents
Basic/Debug from removing the spaces before the statement
portion of the line. When the program is executed, the message
will be printed exactly as it appears in lines 1000-1070,
including the vertical bars along the left edge. The vertical
bar is needed to indent line 1000; the others are included for
consistency. In summary, use a colon to indent an instruction
because Basic/Debug recognizes it as a statement delimiter, and
use the vertical bar to indent text lines because it is the
least distracting character to have printed down the left side
of a page.

3-11

LIS'l

Syntax:

new stmnt =) NEW

Example:

NEW

The NEW command resets pointer RIO-II to the beginning of
user memory, thereby marking the space as empty and ready to
store a new program. If this command is entered in error, take
heart, the stored program is not really gone. Although it may
not be modified, it may at least be listed by setting the line
number of the first line back to a very small number. Use a
LET statement in the immediate mode, as shown in the example
below:

LET iTS=l

Although an attempt to run the program after this kind of
recovery may appear to work, there is no longer any memory
over-run protection, and the program may be destroyed.

3-12

Syntax:

delimiter

item

initial item

=> PRINT [item (delimiter item)*] [delimiter]
=> initial item (delimiter item)* [delimiter]

=> , , , I 'i'

=> quoted_string expression I HEX' ('expression')'

PRINT

=> quoted_string signed_expression , ('expression')'

quoted_string
=> ,n, { any character sequence, not containing

nulls, deletes, linefeeds, carriage returns,
escapes, backspaces or quotes},n,

Examples:

PRINT HEX (255)
"THE ANSWER IS niX
(A*IOO)
+%800 + Z
PRINT A, B, C, D, E

The PRINT command lists its arguments, which may be text
messages or numerical values, on the output terminal. The
delimiters used in the argument specify how the items are to be
printed on the screen.

Characters and spaces enclosed in quotation marks are
listed exactly as they are typed. Quotation marks are
unprintable. If a message must be punctuated with a quotation
mark, use the single quote or apostrophe instead. As mentioned
above, a character string enclosed in quotation marks implies
the PRINT command, so the keyword may be omitted. The PRINT
keyword without an argument or termInating delimiter generates
a blank line. Any PRINT instruction can be followed by a colon
and another statement.

When an expression is entered as the argument to the PRINT
command, Basic/Debug evaluates it and lists its decimal value
at the terminal. Only the significant digits are printedi
leading zeros and divisional remainders are not. PRINT treats
numbers as signed integers. A method for printing unsigned
values is presented in Section 2.5.

3-13

PRINT

To PRINT a hexadecimal value, use the syntax:

PRINT HEX (expression)

Basic/Debug evaluates the expression, and prints its
positive hexadecimal equivalent. The PRINT command cannot list
a negative hexadecimal number.

Unlike character strings, the HEX function must be
preceded by the PRINT keyword, as must any expression beginning
with a variable. However, the keyword may be omitted before an
expression if the expression is preceded by a "+" or "_no For
example, -10 + 20 or +20 - 10 entered as statements print a
value of 10, but 20 - 10 results in an error message.

When a comma is used to delimit items in a PRINT
statement, a tab is generated between each item. The tab stops
are located at eight-space intervals across the screen. To
print left-justified columns, simply put all the items to be
printed on one line in one PRINT statement, and separate them
by commas. The first character of the data item will appear in
the column containing the tab stop. If the item is longer than
eight characters, Basic/Debug tabs to the next available stop
to print the next item.

To print one item directly after another without any
spacing, use a semicolon as a delimiter. For example, the
command:

PRINT"OUTPUT=";X

will print the value of variable X immediately after the equal
sign. If a PRINT statement is ended by a semicolon, no
carriage-return-linefeed is generated. The next item printed
py a subsequent statement will appear on the same line as the
item that preceded the semicolon. A comma at the end of a
PRINT statement will also suppress the carriage return
sequence, however, the next item to be printed appears at the
next eight column tab stop.

To print right-justified columns, as is necessary with
lists of figures, leading spaces must be added. Basic/Debug
can only print spaces enclosed in quotation marks. The
following example program adds leading spaces to N:

200 IF N(lOOOO THEN PRINT • .;
210 IF N(lOOO THEN PRINT • .;
220 IF N(lOO THEN PRINT" ";
230 IF N(lO THEN PRINT" ";
240 PRINT N

3-14

Basic/Debug can print most control characters such as the
bell if they are contained in a quoted character string. The
following control characters cannot be printed:

back space
escape or cancel
carriage return
linefeed
delete
null

(AH)
(ESC)
(CR)
(LF)
(DEL)
(NUL)

The circumflex, "A", indicates that the control key is
held down while the specified key is pressed.

Although control characters can be printed, most terminals
do not advance the cursor when the control character is
received. Therefore, Basic/Debug's cursor pointer may not
indicate the true position of the cursor after control
characters are printed. When this is the case, any attempt to
print in columns using the comma delimiter will fail. For
example:

5 X=O
10 PRINT "XAG", X
20 PRINT "X", X

When the above program is executed, the following output
appears at the terminal:

X
X

o
o

The statement at line 10 inserts only seven spaces because
the control-G character pushed the cursor pointer one place to
the right of the cursor's actual position.

3-15

PRINT

REM

Syntax:

rem stmnt =) REM {all following characters to the end
of the line}

Examples:

REM CONTROL LOOP
REM SUBROUTINE NAME
REM CODE EXPLANATION

The REM command is used to insert comments, remarks, or
other explanatory messages into the code. Basic/Debug ignores
anything following the REM keyword, therefore, REM and its
comment must be the last command on a line. The liberal use of
remarks throughout a program makes it easier to read and
maintain. However, remarks take space in memory, and should be
omitted for maximum space utilization.

3-16

Syntax:

return stmnt => RETURN I RET

Examples:

RETURN
RET

RETURN is always the last instruction of a subroutine, and
may be abbreviated as RET. It does not require an argument
because GOSUB stores the next line number where RETURN can find
it to restart normal sequential execution. RETURN must be the
last instruction on a line.

If one subroutine calls another, the RETURN instruction at
the end of the second subroutine returns execution to the first
subroutine. In this way, subroutines may be nested to the
depth allowed by the memory available to the GOSUB stack.

3-17

RETURN

R~

Syntax:

run stmnt =) RUN [expression (' " expression)*]

Examples:

RUN
RUN 17, %200, 23

This command initiates sequential execution of all
instructions stored in memory. RUN is used only in the
immediate mode. Data values for the first IN command may be
entered, separated by commas, between the keyword RUN and the
terminating carriage return, as shown below:

RUN 45,-583

3-18

Syntax:

stop_stmnt =) STOP

Example:

STOP

STOP gracefully ends program execution, and clears the
GOSUB stack. A STOP instruction is implied after the last
program line in memory, so a terminating STOP command may be
omitted from the program to save memory space.

Program execution is often ended abruptly by an error.
After altering the errant statement in the immediate mode, the
user may restart the run by using GOTO with the appropriate
line number, or reset the program with a STOP instruction, and
RUN the program again from the beginning.

3-19

STOP

Section 4
Errors and Interactive Debugging

4.1 Errors

Errors occur when Basic/Debug is unable to interpret an
instruction. An error returns the system to the immediate mode
with all variables and the GOSUB stack unaltered and sends the
user an error message. Error messages appear at the terminal
in the following format:

terror code AT line number

The numerical error codes are defined in Appendix C. If
the error is found while a program is running, the error
message will contain a line number. An error may occur in the
immediate mode, but no line number will be listed. An error
occurs when the keyword or argument is unrecognizable or
unexecutable, or, in the case of an IN or INPUT instruction,
that the data input by the operator is unintelligible. A
control G is sent to the terminal with the error message to
ring the terminal bell.

4.2 Interactive Debugging

Basic/Debug allows interruptions and changes during a
program run to correct errors and add new instructions without
disturbing the sequential execution of the program.

To interrupt a running program, press the escape key.
Escape causes error 0 at the next line to be executed. The
GOSUB stack and variables are preserved, so that after the
program is edited, the run may be restarted by a GOTO command
with the appropriate line number. Use the same procedure to
correct code where Basic/Debug returns an error. Registers and
the GOSUB stack are maintained through any error condition, so
a problem line may be retried any number of times.

Escape is tested when execution advances sequentially from
one line to the next. It is not tested between statements on a
single line, or after a GOTO or GOSUB. It is tested after a
RETURN. Likewise, all conditional instructions following an IF
command are executed before the escape condition is tested.

4-1

If execution is caught in a loop in a machine language
subroutine or in a one line GOTO loop, an escape keystroke
cannot interrupt the program. In this case, execution must be
terminated by a CPU reset. The program may be preserved in
memory during reset by holding down the break key while
pressing the reset button.

Escape also cannot interrupt a program during the
execution of an INPUT or IN statement. Escape merely cancels
the input line buffer and reissues the prompt "?". So, to
generate an error, enter something unintelligible, such as a
per iod •

To cause a break in a program, enter a line number
followed by something uninterpretable, again for example, a
period. Do not use STOP in a program to be debugged
interactively because its execution clears the GOSUB stack.

4-2

Section 5
Execution Speed vs Memory Space

5.1 Introduction

Depending on the application, some programs are limited by
the memory space available, while others are limited by the
time necessary to execute each instruction. There are
trade-off relationships between program readability, memory
space, and execution time. The following sections advise hO\;f
to code a program for either minimum memory usage or minimum
execution time.

5.2 Conserving Memory Space

To conserve memory space, eliminate all optional keywords
such as LET, PRINT, and THEN from the code wherever possible.
Abbreviate RETURN to RET and eliminate all spaces. A STOP
command at the end of the program is implied, and so it may be
omitted. Remarks should also be deleted.

There are three ways to conserve memory space by reworking
line numbers. First, although most program line numbers are
stored in binary, those used as arguments for GOSUB and GOTO
are stored in ASCII, one byte per digit. Bytes are saved by
using low line numbers for the destination subroutine.

Second, space is allotted for 26 variables whether they
are used or not. Variables not used by the program may be used
to address subroutines or GOTO destinations by storing the line
number in the variable. For example, if the subroutine at line
4000 is used several times in a program, the following
statements store the line number in the variable, then use the
variable as a line number:

LET A 4000
GOSUB A

The variable A could be used elsewhere in the program where the
value 4000 is needed as data; Basic/Debug makes no distinction
between data and line number values.

Third, each line has an overhead of three bytes in memory:
two for the line number and one for the terminating nUll. This
overhead may be reduced to one byte per statement by entering
several statements on a single line. The overhead is then one
byte for the colon separating the statements.

5-1

5.3 Improving Execution Time

Although Basic/Debug does not execute instructions as
quickly as machine language code, some coding practices improve
execution time. Including the keyword LET, for example,
eliminates the interpreter's search through the keyword list to
find the implied command. Including the keyword PRINT before
an expression also eliminates the search process, but a print
statement beginning with a quotation mark executes more quickly
than one beginning with the PRINT keyword.

Speed of execution may also be improved by eliminating
spaces, remarks and THEN, and also by abbreviating RETURN as
RET. It takes longer to convert two or more ASCII digits to
binary than to fetch a variable from memory. Use variables for
any frequently needed large constant.

Using low line numbers for frequently used subroutines
saves execution time as well as memory space. When normal
sequential execution is interrupted by a GOTO, GOSUB, or
RETURN, Basic/Debug scans the program from the beginning until
it finds the desired line. Therefore, the closer the desired
line is to the beginning of the program, the sooner the search
succeeds.

If a choice is allowed for arithmetic instructions, use
the fastest executing operation possible. Multiplication
executes more quickly than addition, which is faster than
subtraction or division. Unnecessary parentheses also slow
execution and should be omitted.

To find out which sections of a program execute slowly
and need improvement, use the Z8671 internal timer Tl to measure
the execution speed of different portions of the programs. First,
initialize the timer to run at its slowest rate:

LET @ 243 3
LET @ 242 0
LET @ 241 14

Then, around each statement or group of statements to be timed,
insert these instructions to add up the amount of time spent
executing:

100 Z = 242: Y = @Z
101 REM - these are the statements to be timed
102 Z = @ Z:S = S + AND(Y-Z-97, 255)

5-2

S is the running sum for time spent on the statement. 97
is an offset representing the measuring overhead, so that S is
not changed if line 101 is omitted. If a section of the
program to be timed takes longer than 256 counts on Tl, it will
overflow, so add an extra offset of 256 or 512 or whatever is
needed.

A program may be timed by Tl without inserting extra
statements, but the machine language routine required for the
ope~ation is beyond the scope of this manual.

5-3

Section 6

The Memory Environment

6.1 Memory Structure

The Z8671 system uses three kinds of memory: registers,
internal ROM and external ROM or RAM. Basic/Debug assigns
addresses 0 through 255 to the register file. The 144
registers include four I/O port registers (RO-R3), 124 general
purpose registers, and sixteen control and status registers.
The port, control, and status registers are common to all Z8
Family CPU chips and are described in the Z8 Technical Manual.
However, Basic/Debug uses many of the general purpose registers
as pointers, scratch workspace, and internal variables. So, in
a Z8671 Basic/Debug system, these registers cannot be used by a
machine language subroutine or other user programs.

The 2K of internal ROM on the Z8671 chip contains the
Basic/Debug intepreter. It begins at address 00 and extends
up to 2047, but because Basic/Debug assigns the addresses 0 -
255 to the register file, the lower 256 bytes of internal ROM
may be accessed only by machine language instructions.

The Z8671 is configured on power-on/reset by Basic/Debug
for external program memory. External memory can be reconfigured
after power-on/reset to meet the needs of the applicaion and can
use all the external memory features available with the Z8 Family
of Microcomputers. The details of external memory configuration
programmable options are described in the Z8 Family of
Microcomputers Product Specification, part number 00-2037-A. The
external memory space can be populated with a combination of
ROM, RAM, and I/O.

6.2 Initialization and Automatic Start-Up

On power-on/reset, Basic/Debug sizes RAM memory and checks
for an auto start-up program. Basic/Debug nondestructively
tests memory from low to high addresses. Only one byte of
every 256 is tested at relative location xxFD (hex). The first
byte of RAM found determines the low boundary of user memory.
Basic/Debug assumes that if xxFD is RAM, xxOO is also RAM and
sets pointer register R8-9 to xxOO (hex). Basic/Debug
continues to test up through memory until it finds a byte that
does not contain RAM. Basic/Debug assumes it has RAM up to and
including yyFF (hex) where yyFD is the last location tested
that contained RAM. The top of user memory pointer, R4-5, is
set to yy20.

6-1

Automatic start-up allows a program stored in ROM to be
executed on reset without operator intervention. Automatic
execution occurs on power-up/reset when the program:

• is stored in ROM

• begins at 1020 (hex)

• begins with a line number between 1 and 254 inclusive

6.3 Program Format

Program lines are stored in memory in the following
format:

06 60

line number
in binary

L I S T o

statement in ASCII null

The end of the program in memory is marked by FFFF (hex),
which is equivalent to the illegal line number 65535 and causes
Basic/Debug to stop. Below is a sample program and a memory
dump of that program:

10 I=5
20 PRINT "WELCOME TO BASIC/DEBUG n

30 I=I-l: IF I
40 STOP

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * *
00 00 00 00 00 00 00 00 00 00 00 co 00 00 00 00 * *
00 OA 49 3D 35 00 00 14 50 52 49 4E 54 20 22 57 * .. I=5 .•• PRINT "w*
45 4C 43 4F 40 45 20 54 4F 20 SA 38 20 42 41 53 *ELCOME TO Z8 BAS*
49 43 2F 44 45 42 55 47 22 00 00 IE 49 3D 49 20 *ICjOEBUG" .•• I=I-*
31 3A 20 49 46 20 49 3E 30 20 47 4F 54 4F 20 32 *1: IF DO GOTO 2*
30 00 00 28 53 54 4F 50 00 FF FF 00 00 00 DC 00 *0 •• (STOP •••...•. *
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * ,. *

6.4 The Top Page of RAM

When Basic/Debug discovers RAM in the system, it
initializes the pointer registers to mark the boundaries
between areas of memory that are assigned specific uses. The
top page of RAM is allocated for the line buffer, variable
storage, and the GOSUB stack. Table 6-1 gives the relative
addresses of the elements contained in the top page of RAM.

6-2

In the following tables, yy signifies the high-order byte
of the address of the last page of RAM, as contained in pointer
register RIO.

Table 6-1. The Top Page of RAM

ADDRESS CONTENTS
(hex)

yyFI - yyFF Unused.

yy68 - yyFO Input line buffer, used for editing
in immediate mode and user response
to IN or INPUT request in run mode.

yy56

yy54

yy52

· · · yy22

yy20

- yy67

- yy55

- yy53

- yy21

Unused.

Storage for variable z.

Storage for variable Y.

Storage for variable A.

Base of GOSUB stack. Stack grows
down to lower memory addresses, and
may extend until it reaches the top
of the user's Basic/Debug program.

6.5 Pointer Registers - RAM System

A pointer register is two eight-bit registers. Two
pointers indicate the current contents of the input line
buffer. Four other pointers manage user memory, as shown in Table
6-2.

6-3

Table 6-2. Memory and Pointers

ADDRESS CONTENTS DESCRIPTION
(hex) (hex)

---------~~------------+-----------------------------;
ROE-OF => yy68 to yyFO

ROC-OD =>
(RI2-RI3)

ROA-OB =>

R06-07 =>

R04-0S =>

R08-09 =)

yy68 to yyFO

yy20

moves down
from yy20

moves up
from xxOO

xxOO

Next value to be used from
line buffer. INPUT command
resets to the beginning of the
buffer; IN uses all values in
the buffer before resetting.

Last character entered in line
buffer. Backspace subtracts
one from this pointer; escape
resets it to the beginning of
the buffer. Rl2 is the page
number for variables and the
input buffer.

Top of user memory, high
boundary of GOSUB stack.
Initially set to yy20 of high
page of RAM.

Low boundary and top of GOSUB
stack.

High boundary of user program
plus stack reserve.

Bottom of user memory; first
line of user program.

Pointers R4-S and R6-7 track the progress of the GOSUB
stack and the user program as they grow towards each other.
R4-S marks the top of the user program, plus a reserve that
buffers any potential collision with the stack. The NEW
command sets this pointer back to the beginning of the user
memory as indicated by pointer R8-9, plus the stack reserve
indicated in the control block. The default size of the stack
reserve is 32 bytes, which should be enough for normal
operations. However, extended machine language programming or
deeply nested interrupts may require an increased reserve.
Section 7.1 contains instructions for altering the control
block.

Pointer R6-7 marks the lowest address used for GOSUB,
which is the top of the stack. It is also the base of the
machine-language/interrupt stack. These elements build down
from the GOSUB stack towards the program. However, because

6-4

there is no pointer register for the top of the machine
language stack, no error is generated if it overflows into
program area. An overflow error is only signaled when R6-R7
crosses RS-9. This is why there is a stack reserve at the end
of the user program, and why an expanded reserve may be
necessary for extensive machine language subroutines and
interrupts.

Occasionally a page or more of memory may be needed for a
special application such as an I/O buffer. Once RS-9, RIO-II,
and R12-13 are set during the intialization procedure,
Basic/Debug never alters them. Therefore, areas of memory may
be reserved by changing these pointers with a LET statement.
For example, to save a block at the bottom of user memory, add
the desired length of the block to RS-9. The user program is
stored beginning at the address stored in RS-9, leaving the
lower addresses for the application. To reserve an area
between the GOSUB stack and the variables, move RIO-II down by
the desired amount.

To reserve a space above the variables, move Rl2 down.
Rl2 must be moved in multiples of 256 bytes. Changing Rl2 also
redefines all the variables so that none of them contain their
previous value. This characteristic may be used to make more
variables available, if used with caution. Whenever Rl2 is
changed, RIO must also be moved to keep the GOSUB stack clear
of the variables.

When the pointers at RS or RIO are changed, a NEW command
must be entered to initialize all the other pointers that
depend on the altered values.

6.6 Register Management for a No-RAM System

When Basic/Debug tests the available memory and finds no
RAM, it uses an internal stack and shares register space with
the input line buffer and variables. This limits the depth of
the GOSUB stack, the length of the line buffer, and the number
of usable variables. Because there is no external memory, some
pointer registers become meaningless.

Table 6-3 maps tne contents of the ZS671 registers when
there is no RAM in the ZS671 system.

6-5

Table 6-3. Register Map for No-RAM System

ADDRESS CONTENTS
(hex) (decimal)

FO-FF 240-255

80-EF 128-239

68-7F

40-67 64-103

40-55 64-85

22-55 34-85

21 33

20 32

IF 31

IE 30

lC-lD 28-29

18-lB 24-27

16-17 22-23

14-15 20-21

12-13 18-19

10-11 16-17

Z8671 control registers. See map for
RAM system.

No registers are implemented at these
addresses.

The Expression Evaluation stack grows
from 7F (hex) down, and the line
buffer grows from 68 (hex) up.

GOSUB stack; grows down.

Area shared by variables M-Z and GOSUB
stack. Variables are destroyed if
stack grows into this range.

Variables A through Z.

Free register, available for USR
subroutine.

Print column counter, contains current
cursor location.

Internal variable. Do not modify.

Basic/Debug uses as scratch. USR
subroutine may use, but cannot save
values here.

Pointer to constant block.

Internal variables. Do not modify.

Current line number.

Second argument in three argument USR
subroutine call.

Last argument and result in USR
subroutine call.

Basic/Debug uses as scratch. USR
subroutine may use, but can not save
values here.

6-6

Table 6-3. Register Map for No-RAM System (cont.)

ADDRESS
(hex) (decimal)

OE-OF 14-15

OC-OD 12-13

OA-OB 10-11

08-09 8-9

06-07 6-7

04-05 4 -5

00-03 0-3

CONTENTS

Pointer to next character to be used
in input buffer.

Pointer to the end of the line buffer.
R12 defines the page containing the
variables, and so contains 00 to
indicate the registers.

Pointer to bottom of GOSUB stack.
Initialized to 68 (hex).

Pointer to start of Basic program.
This address will be in external ROM,
usually 1020 (hex) for auto-start up.

Pointer to top of GOSUB stack. Since
stack is in registers, 00 will be in
R6 and the register number in R7.

Free register. Available for USR
subroutines.

Z8671 I/O ports.

The pointer registers have the register number in the
least significant or odd-numbered byte, and the page number 00
in the most significant byte.

The GOSUB stack starts at R-I03 and grows to R-58 before
signaling a stack overflow. By the time the overflow occurs,
variables M-Z will already be destroyed. If deeply nested
subroutines are used, it is safest to use only the first eight
variables, A-H. However, even these can be destroyed by
machine language code. Of course, if the program contains only
simple expressions and few subroutines, all the variables are
available. To test if variables are being destroyed, set the
last variable used to a known value, run the program, and see
if it change~.

6.7 The Memory Map

Table 6-4 gives the complete memory map for a Z8671
Basic/Debug system with RAM.

6-7

Table 6-4. Memory Map

ADDRESS CONTENTS
(hex) (decimal)

FFFD 65533

xxFF

xxOO

1020 4128

1015 4117

1012 4114

100F 4111

100C 4108

1009 4105

1006 4102

100: 4099

100e 4096

0800 2048

07FF 2047

Baud Rate. Pattern of lowest
three bits sets baud rate. See
Appendix B.

Top of External Memory.

Bottom of highest memory page.

First address of Basic/Debug program
for auto-start up. Store program
starting in byte 20.

Address for external output driver.
Store a jump to a user-supplied
output driver here.

Address for external input driver.
Store a jump to a user-supplied
output driver here.

Address for IRQ5. When an interrupt
occurs at IRQ5, the Z867l vectors
through internal ROM to 100F to get a
jump to the address of a user-sup
plied processing routine.

Jump to routine for IRQ4.

Jump to routine for IRQ3.

Jump to routine for IRQ2.

Jump to routine for IRQl.

Jump to routine for IRQO.

Bottom of external memory.

Top of Z867l's internal ROM.

6-8

Table 6-4. The Memory Map (cant.)

ADDRESS CONTENTS
(hex) (decimal)

07FF-00 2047-0 Basic/Debug Interpreter.

OO-FF 00-255 ROM unaddressab1e by @ or T.

20-27 32-39 Default constant block.

OO-OB 00-11 Interrupt Request Vectors, start of
Z8671's internal ROM.

THE REGISTER FILE

ADDRESS CONTENTS
(hex) (decimal)

OOFF 255 Stack Pointer (Bits 7-0)

OOFE 254 Stack Pointer (Bits 15-8)

OOFD 253 Register Pointer

OOFC 252 Program Control Flags

OOFB 251 Interrupt Mask Register

OOFA 250 Interrupt Request Register

00F9 249 Interrupt Priority Reg ister

00F8 248 Ports 0-1 mode

00F7 247 Port 3 Mode

00F6 246 Port 2 ModE

00F5 245 TO Presca1er

00F4 244 Timer/Counter 0

00F3 243 Tl Prescaler

00F2 242 Timer Counter 1

OOFl 241 Timer Mode

OOFO 240 Serial I/O

6-9

Table 6-4. Memory Map (cont.)

ADDRESS
(hex) (decimal)

80-EF 128-239

40-7F 64-127

21-3F 33-64

20 32

IF 31

IE 30

lC-lD 28-29

18-lB 24-27

16-17 22-23

l4-15 20-21

12-13 18-19

10-11 16-17

OE-OF l4-15

CONTENTS

No registers implemented.

Expression Evaluation Stack.
Basic/Debug uses all these registers
only for the most complicated
expressions. Usually the lower
registers are available for USR
subroutines.

Free registers available for USR
subroutines. They are never used by
Basic/Debug interpreter.

Print column counter, contains current
cursor location.

Stores internal variables used by
interpreter. Do not modify.

Interpreter uses as scratch. USR
may use, but cannot save values here.

Pointer to the constant block.

Stores internal variables used by
interpreter. Do not modify.

Contains line number currently being
executed.

Passes second argument to USR
subroutine in three-argument call.

Passes last argument and result of
USR subroutine call.

Interpreter uses as scratch. May
be used in USR subroutine, but value
cannot be saved.

Pointer to next unused character
in the input line buffer.

6-10

Table 6-4. Memory Map (cont.)

ADDRESS
(hex) (decimal)

OC-OD 12-13

OA-OB 10-11

OS-09 S-9

06-07 6-7

CONTENTS

Pointer to end of line buffer.
Indicates last character entered
in immediate mode or in response to
a "1" prompt in the run mode. R12
(OC) contains the number of the
highest page in RAM, or 00 if there is
no RAM.

RIO-Rll. Pointer to stack bottom, high
boundary of usable memory. The ZS671
stack pointer is initialized to the
value contained in this pointer~ On
powerup, these are initially set to
xx20 of the highest page of RAM.

RS-9. Contains address of the first
byte of a user program. Also points
to the lowest byte of user memory,
initially set to first location in
external RAM, or to location 1020 if
there is ROM there.

R6-7. Marks the top of the GOSUB
stack, also the base of the machine
language stack. It pushes down two
bytes per GOSUB, and pops up two on
each RETURN. If this pointer crosses
the program end pointer (R4-5), a
memory overflow error occurs and
Basic/Debug aborts the program or the
insertion that caused it. The stack
reserve at the end of the program
prevents any damage to the code. NEW
and STOP statements reset this pointer
to the value in RIO-ll.

6-11

Table 6-4. Memory Map (cont.)

ADDRESS
(hex) (decimal)

04-05 4-5

00-03 0-3

CONTENTS

R4-5. Pointer to end of Basic/Debug
program in RAM, plus a stack reserve.
If the GOSUB stack pointer reaches
this address, an overflow error
results. The NEW command sets this
to the value of RS-9 plus the stack
reserve, a value which is set by the
fifth byte in the constant block.
As program lines are entered, this
pointer advances to protect the
program. Program data stored above
this pointer may be destroyed by
deeply nested subroutines or by
program modification. However,
Basic/Debug keeps this pointer a safe
distance ahead of the last program
line so that if any overflow does
occur, the program is not affected.

Z8671 I/O Ports

6-12

Section 7
The Constant Block, Interrupts, and

I/O Drivers
7.1 The Constant Block

The constant block can reconfigure the Z8671 Basic/Debug
system to support unusual terminal characteristics, and expand the
stack reserve in user memory. The default constant block is located
in the bottom page of internal ROM and can be accessed only by
machine language code. However, Basic/Debug can be directed to
use a user-supplied constant block stored in external memory.

The Z8671 Basic/Debug system comes configured for a standard
ASCII CRT terminal or teleprinter. Because Basic/Debug echoes
all input back to the terminal, the terminal must operate in
full-duplex mode, and display or print only what is output from
the Z8671. Basic/Debug outputs a simple carriage-return line feed
sequence (hex OD, OA) with no pad characters as a line separator.
It uses ESC (hex IB) as the line cancel code and BS (hex 08) as
backspace.

To reconfigure Basic/Debug to support alternate codes, store
a 16 byte constant block in external ROM or RAM memory at an
address divisible by 16. The following table summarizes the
contents of the constant block:

Table 7-1. The Constant Block

Relative address Contents Defaul t
(hex)

xxxO %06 %06
xxxI %50 %50
xxx2 stack reserve %20
xxx3 backspace code %08
xxx4 cancel code UB
xxx5 to xxxF line separator sequence %00 OA FE

terminating with %FE

The first two bytes of the constant block must contain hex
0650. The third byte of the constant block sets the size of the
stack reserve at the end of the user program in memory. The
default value is 32 (hex 20), but an application using deeply
nested interrupts and many machine language subroutines may
require a larger reserve.

7-1

Basic/Debug compares every input character to the next
bytes of the constant block because they are editing codes.
code in the fourth byte causes Basic/Debug to adjust buffer
R12-R13 to delete the previous character. Nothing is echoed
the input character.

two
The

pointer
except

In immediate mode, the code in the fifth byte causes Basic/Debu(
to cancel the content of the line buffer. When an input character
matches the content of xxx4, the pointer is reset to the beginning
of the line buffer. In run mode, this code escapes the program by
returning error O.

The last ten bytes of the block define the line separator
sequence. However, a maximum of only nine bytes can be sent to
the terminal at the end of each line because the line separator
must be followed by a hexadecimal FE before the sixteenth byte of
the block. If a terminal requires more than seven pad
characters, a special data rate or other unusual format,
alternate I/O drivers must be supplied. Instructions for using
external I/O drivers are given in Section 7.3.

To initialize the constant block, place its address in the
constant block pointer register R28-29. Use a simple LET
statement, for example, if the block is at 2000-200F (hex):

LET T 28 = % 2000

When the constant block and an auto-start program are stored in
ROM, include a statement early in the program to initialize the
constant block.

7.2 Interrupts

Basic/Debug does not process interrupts. Interrupts are
vectored through locations in internal ROM which point to
addresses 1000-1011 (hex). To process interrupts, put jump
instructions to the interrupt nandling routines ~t the
appropriate addresses as shown in Table 7-2.

7-2

Table 7-2. Interrupt Jump Instructions

Add ress contains Jump Instruction and
(hex) Subroutine Address for:

1000-1002 IRQO
1003-1005 IRQl
1006-1008 IRQ2
1009-100B IRQ3
100C-IOOE IRQ4
100F-IOll IRQ5

Basic/Debug uses the internal UART for all program and
data I/O. Applications programs may use other I/O, but
independently of Basic/Debug.

7.3 I/O Drivers

Basic/Debug operates the UART in a polling mode, waiting on
each input and output character. In normal operation, input is
accepted one line at a time. Output is printed similarly in
character groups. Therefore, Basic/Debug alternately computes
and then waits on the I/O process. To increase throughput, these
periods of computing and waiting may be overlapped by external
buffered I/O drivers.

External, user-supplied I/O drivers can increase throughput
by buffering, use devices other than the internal UART, add more
than seven pad characters to the end of each line, or perform any
other application-specific I/O tasks.

Each time Basic/Debug needs a new input character, it cheeks
the Interrupt Mask register to see if the serial input interrupt
(IRQ3) is disabled. If so, it jumps to the internal I/O input
driver. If not, it goes Lo external memory location 1012 (hex)
for a jump instruction to a user-supplied input driver.
Character output is similarly controlled, but the jump
instruction to the external output driver is contained at 1015
(hex) •

Table 7-3 is based on the bits of the Intercupt Mask
Register, shown in Figure 7-1. Bit seven enables interrupts.
Bit three masks IRQ3, which then enables the internal I/O
drivers.

7-3

Table 7-3. External I/O Driver Conditions

Interrupts Enabled? IRQ3 Enabled? Go to External
(D7 in IMR = 1) (D3 in IMR = 1) I/O Driver

yes yes yes
yes no no
no yes yes
no no yes

I~I~I~I~I~I~I~I~I

II
I 1 ENABLES IRaO-IRas

(Do = IRaO)

NOT USED

L-________ 1 ENABLES INTERRUPTS

Figure 7-1. Interrupt Mask Register

External I/O drivers must conform to the following
requirements: They must pass a single ASCII input or output
character in R19 with the register pointer set to R16-3l.
Registers R4-R15 and R22-32 must be preserved. Location %1012
must contain a jump to the character input driver, and %1015 a
jump to the character output driver. The input routine must do
any necessary echoing, and the parity bit (bit 7) of all input
characters must be set to O. Drivers return to Basic/Debug with
a RETURN instruction (hex AF) •

Whether or not external I/O drivers are enabled, though it
is of primary use when they are, the program execution can be
halted by setting user flag 1, which is the least significant bit
of the flag register (R252), to 1. Normally an interrupt-driven
input routine would be looking for an escape character in the
incoming data; if one comes up, the low bit in the flag register
would be set to one. Note that user flag 2 should not be altered
by the I/O routines.

7-4

7.4 Binary I/O

Basic/Debug programs may read and write binary data by
directly calling the single-character input/output drivers with a
USR or GO@ statement.

Input driver address: %54
Output driver address: %61

The routines at the indicated addresses will either use the
built-in UART drivers, or jump to external, user-supplied
routines, depending on the conditions discussed in Section 7.3.

The following example program prints the hex equivalent of
an ASCII character.

10 PRINT "INPUT A CHARACTER, PLEASE";
20 C = USER (%54)
30 PRINT" THE HEX VALUE OF ";
40 GO@ %61, C
50 PRINT" IS "; HEX (C);". SHALL WE DO ANOTHER?";
60 Q = USER (%54)
70 PRINT : IF Q = %59 GOTO 10
80 REM %59 IS AN ASCII "Y".

7-5

Appendix A

Syntax Summary

This Appendix summarizes Basic-Debug Syntax in a
meta-language descended from the Backus-Naur form. The
language follows the rules below:

Syntactic constructs are denoted by lower case English words
or phrases not enclosed in any special characters. Examples
are command, stmnt, and gosub_stmnt.

The basic symbols of the language are keywords, written in
upper case, and special characters, enclosed in quote marks.
Examples are',' LET 'i' NEW.

Possible repetition of a construct is indicated by appending
either a '+', indicating one or more occurrences, or a '*',
indicating zero or more occurrences. For example, the
definition of number as digit+ means that a number consists
of one or more digits.

Parentheses group together a number of constructs so that a
repetition symbol (+ or *) may be applied to the group.

Square brackets denote optional items. The construct within
the brackets may appear either zero or one times.

The vertical bar 'I' signifies that one of several alternate
constructs may be specified.

,
Curly brackets, '{' and 'l', surround an English description
of a construct that cannot be easily described otherwise.

A-I

command => statement line

program => (number statement_line)+

statement line => (initial_stmnt ':')* stmnt {carriage return}

initial stmnt

stmnt

go_stmnt

address

argl

arg2

gosub_stmnt

goto_stmnt

if stmnt

relational_op

apodosis

in stmnt

input_stmnt

let stmnt

left_part

list stmnt

starting_l1ne

ending_line

new stmnt

delimiter

item

=> go stmnt
=> in-stmnt
=> input stmnt
=> let stmnt
=> print stmnt -
=> initial stmnt
=> if stmnt
=> gosub stmnt
=> goto stmnt
=> list-stmnt
=> new stmnt
=> rem-stmnt
=> return stmnt
=> run stmnt
=> stop_ stmnt

=> GO '@' address [' , , argl [', , arg2))

=> expression

=> expression

=> expression

=> GOSUB expression

=> GOTO expression

=> IF expression relational_op expression rTHEN] apodosis

=> '=' I '<>' I '>' I '<' I '>=' I '<='

=> number I statement_line

=> IN variable (',' variable) *

=> INPUT variable (',' variable)*

=> [LET) left_part ,~, expression

=> variable I '@' factor I 'T' factor

=> LIST [starting_line [',' ending_line))

=> expression

=> expression

=> NEW

=> PRINT [item (delimiter item) *) fClelimiter]
=> initial item (delimiter item)* (delimiter)

=> ',' I ';'

=> quoted_string I expression I HEX 'I' expression ')'

1'.-2

initial item

rem stmnt

return stmnt

run stmnt

expression

=> quoted string I signed_expression I '(' expression ')'

=> ,., {any character sequence, not containing nulls,
deletes, line feeds, carriage returns, escapes,
back spaces or quotes} ,.,

=> REM {all following characters up to the en~ of line}

=> RETURN I RET

=> RUN [expression (',' expression)*)

=> STOP

=> [add_op) term (add_op term)*

signed expression
- => add_op term (add_op term)·

add _op => '+' I '-'
term => factor (mul t _op factor)·

mult op => '* , I '/' '\' -
factor => variable

=> '@' factor
=> 'T' factor
=> number
=> '% ' hex number
=> AND ' (' -expression [', , expression) ') ,
=> USR ' (' address [' I' argl [I I' arg2))') ,
=> '(, expression ') ,

variable => letter

number => digit+

hex number => hex _digit*

letter => A B C D E F G H I J K L M

=> N 0 P Q R S T U V W X Y z

dig it => 0 2 3 4 5 6 7 8 9

hex_digit => digit A B C D E F

A-3

Appendix B
Baud Rate Switch Settings

The baud rate for the Za671 system UART is set in timer
TO according to the least significant three bits of external memory
location FFFD. Basic/Debug reads FFFD once at power-on/reset,
and sets the UART according to the bit pattern. The bit patterns
and corresponding baud rates are shown in the table below.

Content of
Location FFFD Baud Rate

LSB
1 1 1 300
1 1 0 110
1 0 1 L200
1 0 0 2400
0 1 1 4800
0 1 0 9600
0 0 1 19200
0 0 0 150

B-1

Appendix C
Error Code Summary

Basic/Debug gives numeric error messages. Error code
meanings are given below. Error numbers not listed here
occasionally appear. These unlisted codes mean either a memory
overflow caused by a combination of too much program and too
complicated an expression or too many GOSUBs, or just too
complicated an expression, possibly coupled with too long a
previous input line in a No-Ram system.

CODE

o

11

MEANING

Program interrupted by typing ESC code, or by Flag
bit o.

Program line has a line number 0 or greater than
32768.

17 Memory full; new line not inserted.

26 No program to RUN.

37 GOTO is not at the end of program line.

41 Cannot GOTO negative or zero line number.

44 Line number in GOTO does not exist.

66 GOSUB is not at the end of the line.

71 Unrecognizable statement type beginning with GO.

81 Unrecognizable statement type, or n=n missing from
LET statement.

98 LET is missing its n=n.

140 Quote missing in PRINT statement.

171 RETURN is not at the end of the line.

172 GOSUB stack underflow.

175 The GOSUB for this RETURN no longer exists.

181 STOP is not at the end of the line.

C-1

207 INPUT variable name is missing.

210 IN or INPUT expects variable name.

247 LIST is not at end of line.

310 Unrecognizable relation in IF statement.

346 Out of memory on GOSUB or expression evaluation.

381 Divide by zero.

391 Missing parenthesis in AND or USR call.

427 Syntax error in expression, or unrecognizable
statement type.

431 Missing right parenthesis in expression.

C-2

