

ADDENDUM AND

Document Change Notice

Copyright 1981 by Zilog, Inc. All rights reserved. No part of this publication may be reproduced without the written permission of Zilog, Inc. The information in this publication is subject to change

without notice.

1981 DATA BOOK

Document Change Notice

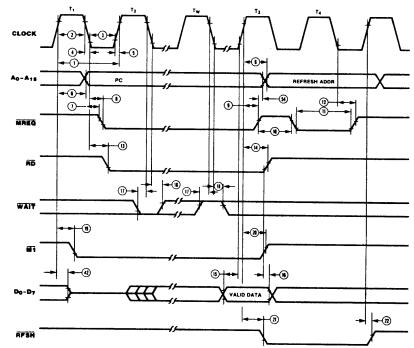
for Microcomputer Components Data Book

December 1981

Publication No: 00-2034-01 DCN No.: E0-2034-01

This Document Change Notice provides changes for the publication specified above as well as for the stand-alone product specifications on each product. These changes will remain in effect unless specifically amended by another DCN or superceded by a publication revision. Please file this DCN at the back of specified documents to provide a record of changes.

Note: The first page cited refers to the 1981 Data Book. The second page, cited in parentheses, refers to the individual product specification printed stand-alone in cases where the change is applicable to both.


Page iii Delete the final paragraph.

Page 3

Z8400 Z80[®] CPU Product Specification

Page 18 (Page 14) In Figure 5, delete #45 and insert #54 in its place.

Delete Z80 CPU from right margin.

NOTE: $T_{\mathbf{w}}$ -Wait cycle added when necessary for slow ancilliary devices.

Figure 5. Instruction Opcode Fetch

In Figure 6, "Memory Read or Write Cycle," extend parameter 45 as illustrated in the corrected version of the art that follows.

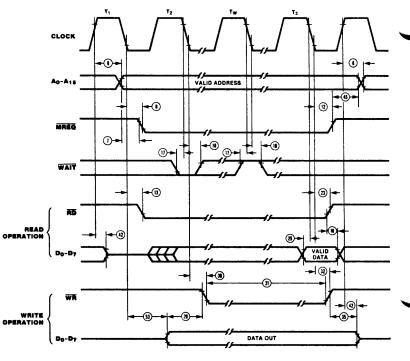
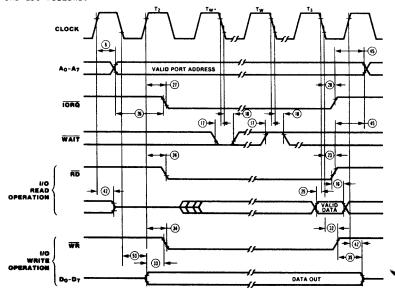
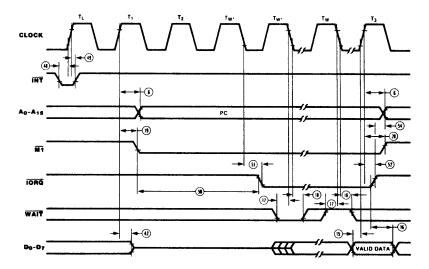



Figure 6. Memory Read or Write Cycles


In Figure 7, "Input or Output Cycles," the diagram is incorrect for the ADDRESS BUS, the INPUT/OUTPUT REQUEST, and WAIT lines. A corrected version of the art follows.

NOTE: $T_{w^*} = One$ Wait cycle automatically inserted by CPU.

2

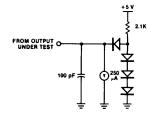
Page 19 (Page 15) In Figure 8, "Interrupt Request/Acknowledge Cycle," the diagram is incorrect for the ADDRESS BUS, MACHINE CYCLE ONE and INPUT/OUTPUT REQUEST lines. A corrected version of the art follows.

NOTE: 1) T_L = Last state of previous instruction.

2) Two Wait cycles automatically inserted by CPU(*).

Figure 8. Interrupt Request/Acknowledge Cycle

Page 24 (Page 20) Make the following changes in **AC CHARACTERISTICS:**

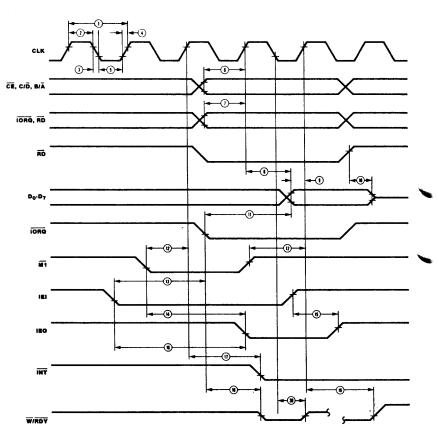

- In parameter 45 change "Address Stable after" to "to Address Hold Time."
- 2) Add the following line of characteristics:

			Z 8 0	Z80A	Z808
			CPU	CPU	CPU
Number	Symbol	Parameter	min.	min.	min.
54	TdCTr(A)	MREQ, IORQ, RD to Address Hold	0	0	0
		Time			

3) Add the footnote:

** All timings assume equal loading on pins with 100 pF.

Page 25 (Page 21) In **Standard Test Conditions** the art is incorrect. A corrected version follows.



Z8440 Z80 SIO Product Specification

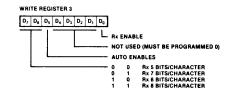
Page 80 (Page 10) In Figure 13, "Read Register Bit Functions," add the following note to Read Register 2*:

*(Channel 8 only)

Page 84 (Page 14) To the diagram of AC Electrical Characteristics add W/RDY, WAIT/READY, as a label to the last signal line. A corrected version of the art for that line follows.

The parameter of number 18 should read:

 \overline{IORQ} + or \overline{CE} + to $\overline{W}/\overline{RDY}$ + Delay (Wait Mode).


The parameter of number 19 should read:

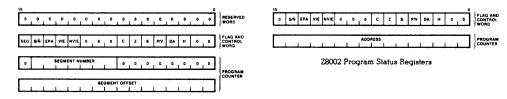
Clock + to $\overline{W}/\overline{RDY}$ + Delay (Ready Mode).

Z8470 Z80 DART Product Specification

Page 96 (Page 8) In the **Z80 Dart Read and Write Registers,** Write Register 3, the label for bits $D_4-D_3-D_2-D_1$ should read:

Not Used (Must Be Programmed 0)

Z8001/2 Z8000TM CPU Product Specification


Page 105

The final Feature should read:

(Page 1)

4, 6, and 10 MHz clock rate.

Page 107 (Page 3) In **Program Status Information,** Figure 5, "Z8000 CPU Special Registers" the Flag and Control Word art is incorrectly labeled in bit 13. It should read EPA. A corrected version of the art follows.

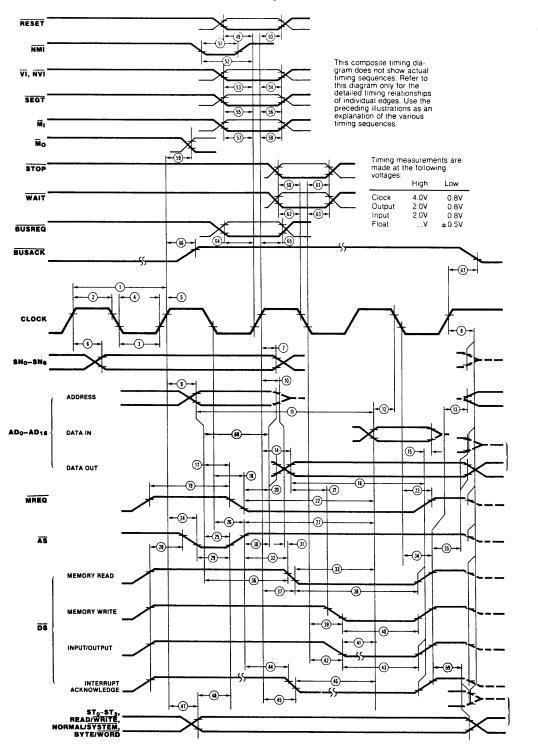
Z8001 Program Status Registers

Figure 5. Z8000 CPU Special Registers

In Interrupt and Irap Structure, the first sentence of the second paragraph should read:

The CPU supports three types of interrupts (non-maskable, vectored and non-vectored) and four traps (system call, <u>Extended Processing</u> <u>Architecture</u> instruction, privileged instructions and segmentation trap).

In Interrupt and Trap Structure the first sentence of the third paragraph should read:


The remaining traps occur when instructions limited to the system mode are used in the normal mode, or as a result of the System Call instruction, or for an \underline{EPA} instruction.

Change Z8010 MMU in right margin to Z8001/2 CPU.

In **Reset** delete "ST $_0$ -ST $_3$ and" from the third entry.

Page 127

To the **Composite AC Timing Diagram** add the parameters 68 and 69 as illustrated in the following corrected art.

Page 129 (Page 25)

, see

Pag	e 129)		Z8001 4M	/Z8002 Hz	6M		10	/Z8002B MHz
No.	Symbol	Parameter	Min(ns)	Max(ns)	Min(ns)	Max(ns)	Min(ns)	Max(ns
1	TcC	Clock Cycle Time	250	2000	165	2000	100	2000
2	TwCh	Clock Width (High)	105	2000	70	2000	40	
3	TwC1	Clock Width (Low)	105	2000	70	2000	40	
4	TfC	Clock Fall Time		20		10		10
5	TrC	Clock Rise Time		20		15		10
6	TdC(SNv)	Clock † to Segment Number Valid		130		110		70
		(50 pF load)						70
7	TdC(SNn)	Clock † to Segment Number Not Valid	20		10		5	
8	TdC(Bz)	Clock ↑ to Bus Float		65		55	-	40
9	TdC(A)	Clock † to Address Valid		100		75		50
10	TdC(Az)	Clock † to Address Float		65		55		40
11	TdA(DR)	Address Valid to Read Data Required		475*		305*		180*
	,,	Valid		475				100.
12	TsDR(C)	Read Data to Clock + Setup Time	30		20		10	
13	TdDS(A)	DS ↑ to Address Active	80*		45*		20*	
14	TdC(DW)	Clock † to Write Data Valid	00	100	47.	75	20*	50
15	ThDR(DS)	Read Data to DS + Hold Time	0	100	0	15	0	50
16	TdDW(DS)	Write Data Valid to DS ↑ Delay	295*		195*			
17	TdA(MR)	Address Valid to MREQ + Delay	275×				110*	
18	TdC(MR)	Clock \neq to MREQ \neq Delay	, <u>, , , , , , , , , , , , , , , , , , </u>	80	35*	70	20*	60
19	TwMRh	MREQ Width (High)	210*	00	175*	70	0.0*	40
20	TdMR(A)	MREQ + to Address Not Active			135*		80*	
21	TdDW(DSW)		70*		35*		20*	
		Write Data Valid to $\overline{DS} \neq$ (Write) Delay	55*		35*		15*	
22	TdMR(DR)	MREQ + to Read Data Required Valid	375*		230 *		140*	
23	TdC(MR)	Clock + MREQ + Delay		80		60		45
24	TdC(ASf)	Clock + to AS + Delay		80		60		40
25	TdA(AS)	Address Valid to AS + Delay	55*		35*		20*	
26	TdC(ASr)	<u>Cl</u> ock ↓ to AS ↑ Delay		90		80		40
27	TdAS(DR)	AS + to Read Data Required Valid	360*		220*		140*	
28	TdDS(AS)	<u>DS</u> ↑ to AS ↓ Delay	70*		35*		15*	
29	TwAS	<u>AS</u> Width (Low)	85*		55*		30*	
30	TdAS(A)	AS ↑ to Address N <u>ot</u> Active Delay	70 *		45*		20*	
31	TdAz(DSR)	Address Float to DS (Read) + Delay	0		0		0	
32	TdAS(DSR)	AS ↑ to DS (Read) ↓ Delay	80*		55 *		30*	
33	TdDSR(DR)	DS (Read) + to Read Data Required Valid	205*		130*		70*	
34	[dC(DSr)	<u>Cl</u> ock↓ to DS ↑ Delay		70		65		45
35	TdDS(DW)	DS + to Write Data Not Valid	75 *		45*		25*	
36	TdA(DSR)	Address Valid to $\overline{\text{DS}}$ (Read) \downarrow Delay	180×		110*		65*	
37	TdC(DSR)	Clock + to DS (Read) + Delay	100	120	110	85	02	60
38	TwDSR	DS (Read) Width (Low)	275*	120	185*	0)	110*	00
39	TdC(DSW)	Clock + to DS (Write) + Delay		95	105	80	110	60
40	TwDSW	DS (Write) Width (Low)	185*		110*	00	76*	00
41	TdDSI(DR)	$\overline{\text{DS}}$ (I/O) \downarrow to Read Data Required Valid	330*		110*		75*	
42	TdC(DSf)	Clock \downarrow to DS (I/O) \downarrow Delay	JJU*	100	210*	00	120*	
43	TwDS	DS (I/O) Width (Low)	410*	120	000	90	4 (0 *	60
44 44	TdAS(DSA)		410*		255*		160*	
+4 45		AS \uparrow to QS (Acknowledge) \downarrow Delay	1065*		690*		410*	
45 46	TdC(DSA) TdDSA(DR)	Clock + to DS (Acknowledge) + Delay		120	005 -	85		65
+0	TUDSA(DR)	DS (Acknowledge) + to Read Data	455*		295*		165*	
	T 10(C)	Required Delay						
17	TdC(S)	Clock † to Statu <u>s</u> Valid Delay		110		85		60
48	TdS(AS)	Status Valid to AS + Delay	50*		30*		10*	
19	TsR(C)	RESET to Clock + Setup Time	180		70		50	
50	ThR(C)	RESET to Clock † Hold Time	0		0		0	
51	TwNMI	NMI Width (Low)	100		70		50	
52	TsNMI(C)	NMI to Clock † Setup Time	140		70		50	
53	IsVI(C)	VI, NVI to Clock + Setup Time	110		50		40	
54	ThVI(C)	VI, NVI to Clock + Hold Time	20		20		10	
55	TsSGT(C)	SEGT to Clock † Setup Time	70		55		40	
6	ThSGT(C)	SEGT to Clock * Hold Time	0		Ő		40	
57	TsMI(C)	MI to Clock ↑ Setup Time	180		110		80	
8	ThMI(C)	MI to Clock [↑] Hold Time	0		0		0	
9	TdC(MO)	Clock † to MO Delay	U	120	U	85	U	70
50	TsSTP(C)	STOP to Clock + Setup Time	140	120	on	67	50	70
		STOP CO CIUCK 7 JELUD IINE	140		80		50	

*Clock-cycle-time-dependent characteristics. See table on following page.

			Z8001/Z8002 4₩Iz	Z8001A/Z8002A 6MHz	Z8001B/Z8002B 10MHz
No.	Symbol	Parameter	Min(ns) Max(ns)) Min(ns) Max(ns)	Min(ns) Max(ns)
61	ThSTP(C)	STOP to Clock + Hold Time	0	0	0
62	Ts₩(C)	WAIT to Clock + Setup Time	50	30	20
63	ThW(C)	WAIT to Clock + Hold Time	10	10	5
64	TsBRQ(C)	BUSREQ to Clock † Setup Time	90	80	60
65	ThBRQ(C)	BUSREQ to Clock + Hold Time	10	10	5
66	TdC(BAKr)	Clock † to BUSACK † Delay	100	75	60
67	TdC(BAKf)	Clock † to BUSACK + Delay	100	75	60
68	TwA	Address Valid Width	150*	95*	50*
69	TdDS(S)	DS + to STATUS Not Valid	80*	55 *	30*

Page 130

(Page 26)

A revised version of follows.

 $\textit{version} \quad \textit{of} \quad \textit{the } \textbf{Clock-Cycle-Time-Dependent} \quad \textbf{Characteristics}$

	Clock-Cycle-Time-Dependent Characteristics (Page 130)						
Number	Symbol	Z8001/Z8002 Equation	Z8001A/Z8002A Equation	280018/280028 Equation			
11	TdA(DR)	2TcC + TwCh - 130 ns	2TcC + TwCh - 95 ns	2TcC + TwCh - 60 ns			
13	TdDS(A)	TwCl – 25 ns	TWC1 - 25 ns	TwCl – 20 ns			
16	TdDW(DS)	TcC + TwCh - 60 ns	TcC + TwCh – 40 ns	TcC + TwCh - 30 ns			
17	TdA(MR)	TwCh – 50 ns	TwCh - 35 ns	TwCh – 20 ns			
19	TwMRh	TcC - 40 ns	TcC - 30 ns	1cC - 20 ns			
20	TdMR(A)	TwCl - 35 ns	TwCl – 35 ns	TwCl – 20 ns			
21	TdDW(DSW)	TwCh – 50 ns	TwCh – 35 ns	TwCh – 25 ns			
22	TdMR(DR)	2ĭcC – 130 ns	2TcC - 100 ns	2TcC - 60 ns			
25	TdA(AS)	⊺wCh − 50 ns	TwCh – 35 ns	TwCh – 20 ns			
27	TdAS(DR)	2TcC - 140 ns	2TcC - 110 ns	2TcC - 60 ns			
28	TdDS(AS)	TwCl – 35 ns	TwCl – 35 ns	⊺wCl – 25 ns			
29	TwAS	TwCh – 20 ns	TwCh – 15 ns	TwCh – 10 ns			
30	TdAS(A)	TwCl – 35 ns	TwCl - 25 ns	⊺wCl – 20 ns			
32	TdAS(DSR)	TwCl - 25 ns	TwCl - 15 ns	TwCl – 10 ns			
33	TdDSR(DR)	TcC + TwCh - 150 ns	TcC + TwCh - 105 ns	TcC + TwCh - 70 ns			
35	TdDS(DW)	TwCl – 30 ns	TwCl – 25 ns	TwCl – 15 ns			
36	TdA(DSR)	TcC - 70 ns	TcC - 55 ns	TcC - 35 ns			
38	TwDSR	TcC + TwCh - 80 ns	TcC + TwCh - 50 ns	TcC + TwCh - 30 ns			
40	TwDSW	IcC - 65 ns	TcC - 55 ns	TcC - 25 ns			
41	TdDSI(DR)	2TcC - 170 ns	2TcC - 120 ns	21cC - 80 ns			
43	TwDS	2TcC - 90 ns	21cC - 75 ns	2TcC - 40 ns			
44	TdAS(DSA)	4TcC + TwCl - 40 ns	4TcC + TwCl - 40 ns	4TcC + TwC1 - 30 ns			
46	TdDSA(DR)	2TcC + TwCh - 150 ns	2TcC + TwCh - 105 ns	2TcC + TwCh - 75 ns			
48	TdS(AS)	TwCh – 55 ns	TwCh – 40 ns	TwCh – 30 ns			
68	TwA	TcC - 90 ns	TcC - 70 ns	TcC - 50 ns			
69	IdDS(S)	TwCl – 25 ns	⊺wCl – 15 ns	TwCl – 10 ns			

Page 131 (Page 27) In $\ensuremath{\mathsf{Test}}$ Conditions, the first sentence of the note following the diagram should read:

All ac parameters assume a total load capacitance (including parasitic capacitances) of 100 pF max, except for parameter 6 (50 pF max).

In **Ordering Information** the Description of all Z8001 and Z8001A Product Numbers should read:

CPU (segmented, <u>48</u>-pin).

In the Notes to **Ordering Information** change CM = -55° C to +125°C to read:

 $MB = -55^{\circ}C \text{ to } +125^{\circ}C.$

Page 133 (Page 1) In Figure 2, "Pin Assignments," $\overline{\text{DS}}$ and $\overline{\text{AS}}$ were reversed. A corrected version of the art follows.

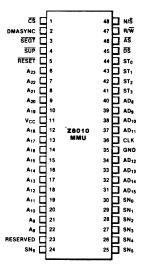


Figure 2. Pin Assignments

Page 138 (Page 6) In **Segment Trap and Acknowledge** the first sentence of the third paragraph should read:

Following the acknowledge cycle the CPU automatically pushes the Program Status (\underline{PC} and \underline{FCW}) onto the system stack and loads another Program Status from the Program Status Area.

The third sentence of the third paragraph should read:

If the store creates a write warning condition, a Segment Trap Request is generated and is serviced at the end of the <u>program status</u> swap.

The fifth sentence of the third paragraph should read:

If a violation rather than a write warning occurs during the program status swap, the FATL flag is set rather than the SWW flag.

Page 139	In DMA Operation the third paragraph, the first three sentences should read
(Page 7)	as follows:
	At the start of a DMA cycle, DMASYNC must go Low for <u>at least two</u> <u>clock</u> cycles, indicating to the MMU the beginning of a DMA cycle. A Low DMASYNC inhibits the MMU from using an indeterminate segment number on lines SN_0-SN_6 . When the DMA logical memory address is valid, the DMASYNC line must be High <u>before</u> a rising edge of Clock and the MMU then performs its address translation and access protection functions.
Page 144	The DMASYC Pin Description should read as follows:
(Page 12)	DMA/Segment Number Synchronization Strobe (input, active High). A Low on this line indicates that <u>the segment number lines are 3-state</u> ; a High indicates that the segment number is valid. It must always be High during CPU cycles. If a DMA device does not use the MMU for address translation, the BUSACK signal from the CPU may be used as an input to DMASYNC.
Page 145	Add the following note to the DC Characteristics:
(Page 13)	NOTE: The on-chip back-bias voltage generator takes approximately 20 us to pump the back-bias voltage to -2.5V after the power has been turned on. The performance of the Z8010 Z-MMU is not guaranteed during this period.
Page 146 (Page 14)	Add the following note to AC Characteristics:
	** Timing measurements are made at the following voltages:
	High Low Clock 4.0V 0.8V Output 2.0V 0.8V Input 2.0V 0.8V Float ΔV <u>+</u> 0.5V
Z8030 Z8000 Z-SCC Product Specification	
Page 155	In Interrupts add the following to the end of the fifth paragraph:
(Page 7)	Two or three $\overline{\text{AS}}$ rising edges are required from the time an interrupt condition occurs until $\overline{\text{INT}}$ is activated.
Page 158 (Page 10)	Add the following to the end of the first paragraph of Programming:
	In the shift right mode the channel select A/\overline{B} is taken from AD_0 and the state of AD_5 is ignored. In the shift left mode A/\overline{B} is taken from AD_5 and the state of AD_0 is ignored. AD_7 and AD_6 are always ignored as address bits and the register address itself occupies AD_4 - AD_1 .
Pages 164-68 (Pages 16-20)	The timing tables on these pages have been revised and expanded to include 6 MHz timing. Corrected versions of these tables follow.

Z-SCC Read and Write Timing (Page 164)

No.	Symbol	Parameter	4 MHz Min(ns) Max(ns)	6 MHz Min(ns) Max(ns)	Notes*
1	TwAS	AS Low Width	70	50	
2	TdDS(AS)	DS ↑ to AS ↓ Delay	50	25	
3	TsCSO(AS)	ĈŜ _O to ĀŠ † Setup Time	0	0	1
4	ThCSO(AS)	CSO to AS ⁺ Hold Time	60	40	1
5	TsCS1(DS)	CS1 to DS ↓ Setup Time	100	80	1
6	ThCS1(DS)	CS1 to DS+ Hold Time	55	40	1
7	TsIA(AS)	INTACK to AS + Setup Time	0	0	
8	ThIA(AS)	INTACK to AS + Hold Time	250	250	
9	TsRWR(DS)	R/W(Read) to DS + Setup Time	100	80	
10	ThRW(DS)	R/W to DS + Hold Time	55	40	
11	TsRWW(DS)	R/₩(Write) to DS ↓ Setup Time	0	0	
12	TdAS(DS)	ĀS ↑ to DS ↓ Delay	60	40	
13	TwDS1	DS Low Width	390	250	
14	TrC	Valid Access Recovery Time	6TcPC	6TcPC	2
		·	+200	+130	
15	TsA(AS)	Address to AS 🛧 Setup Time	30	10	1
16	ThA(AS)	Address to $\overline{\text{AS}}$ + Hold Time	50	30	1
17	TsDW(DS)	Write Data to DS 🕴 Setup Time	30	20	
18	ThDW(DS)	Write Data to DS † Hold Time	30	20	
19	TdDS(DA)	DS + to Data Active Delay	0	0	
20	TdDSr(DR)	DS 🕇 to Read Data Not Valid Delay	0	0	
21	TdDSf(DR)	DS + to Read Data Valid Delay	250	180	
22	TdAS(DR)	AS 🕈 to Read Data Valid Delay	520	335	

NOTES:

1. Parameter does not apply to Interrupt Acknowledge transactions.

^{2.} Parameter applies only between transactions involving the Z-SCC.

		Z-SCC Cycle Timing (Page	: 165)				
No.	Symbol	Parameter		MHz) Max(ns)	-	MHz) Max(ns)	Notes
23	TdDS(DRz)	DS + to Read Data Float Delay		70		45	3
24	TdA(DR)	Address Required Valid to Read Data Valid Delay		570		420	
25	TdDS(W)	DS ↓ to Wait Valid Delay		240		200	4
26	TdDSf(REQ)	DS + to W/REQ Not Valid Delay		240		200	
27	TdDSr(REQ)	DS + to DTR/REQ Not Valid Delay		5TcPC		5TcPC	
				+300		+250	
28	TdAS(INT)	AS 🛧 to INT Valid Delay		500		500	4
29	TdAS(DSA)	AS 🛧 to DS 🕴 (Acknowledge) Delay					5
30	TwDSA	DS (Acknowledge) Low Width	390		250		
31	TdDSA(DR)	DS ↓ (Acknowledge) to Read Data Valid Delay		250		180	
32	TsIEI(DSA)	IEI to DS ↓ (Acknowledge) Setup Time	120		100		
33	ThIEI(DSA)	IEI to DS 🛧 (Acknowledge) Hold Time	0		0		
34	TdIEI(IEO)	<u>IE</u> I to IEO Delay		120		100	
35	TdAS(IEO)	AS 🛧 to IEO Delay		250		250	6
36	TdDSA(INT)	DS ↓ (Acknowledge) to INT Inactive Delay		500		500	4
37	TdDS(ASQ)	$\overline{\text{DS}}$ + to $\overline{\text{AS}}$ + Delay for No Reset	30		15		
38	TdASQ(DS)	AS + to DS + Delay for No Reset	30		30		
39	Twres	AS and DS Coincident Low for Reset	250		250		7
40	TwPC1	PCLK Low Width	105	2000	70	1000	
41	TwPCh	PCLK High Width	105	2000	70	1000	
42	TcPC	PCLK Cycle Time	250	4000	165	2000	
43	TrPC	PCLK Rise Time		20		15	
44	TfPC	PCLK Fall Time		20		10	

NOTES:

- 3. Float delay is defined as the time required for a ± 0.5 V change in the output with a maximum dc load and minimum ac load.
- 4. Open-drain output, measured with open-drain test load.
- Parameter is system dependent. For any Z-SCC in the daisy chain, TdAS(DSA) must be greater than the sum of TdAS(IEO) for the highest priority device in the daisy chain, TsIEI(DSA) for the Z-SCC, and TdIEIf(IEO) for each device

separating them in the daisy chain.

- Parameter applies only to a Z-SCC pulling INT Low at the beginning of the Interrupt Acknowledge transaction.
- Internal circuitry allows for the reset provided by the Z8 to be recognized as a reset by the Z-SCC.

*Timings are preliminary and subject to change. All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0". Z-SCC General Timing (Page 166)

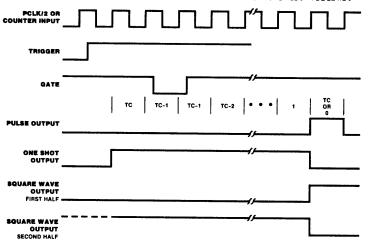
No.	Symbol	Parameter		MHz)Max(ns)) Max(ns)	Notes*
1	TdPC(REQ)	PCLK + to ₩/REQ Valid		250		250	
2	TdPC(W)	PCLK ↓ to Wait Inactive Delay		350		350	
3	TsRXC(PC)	RxC + to PCLK + Setup Time	50		50		1,4
4	IsRXD(RXCr)	RxD to RxC + Setup Time (X1 Mode)	0		0		1
5	ThRXD(RXCr)	RxD to RxC + Hold Time (X1 Mode)	150		150		1
6	IsRXD(RXCf)	RxD to RxC ↓ Setup Time (X1 Mode)	0		0		1,5
7	ThRXD(RXCf)	RxD to RxC + Hold Time (X1 Mode)	150		150		1,5
8	TsSY(RXC)	SYNC to RxC + Setup Time	-200		-200		1
9	ThSY(RXC)	SYNC to RxC + Hold Time	3TcPC		3TcPC		
			+200		+200		1
10	IsTXC(PC)	TxC ↓ to PCLK ↑ Setup Time	0		0		2,4 2 2,5
11	TdTXCf(TXD)	TxC + to TxD Delay (X1 Mode)		300		300	2
12	IdIXCr(IXD)	TxC + to TxD Delay (X1 Mode)		300		300	2,5
13	TdTXD(TRX)	TxD to TRxC Delay (Send Clock Echo)					
14	TwRTXh	RTxC High Width	180		180		
15	TwRTX1	RTxC Low Width	180		180		
16	TcRTX	RTxC Cycle Time	400		400		
17	TcRTXX	Crystal Oscillator Period	250	1000	250	1000	3
18	TwTRXh	TRxC High Width	180		180		
19	TwTRX1	TRxC Low Width	180		180		
20	TcTRX	TRxC Cycle Time	400		400		
21	Twext	DCD or CTS Pulse Width	200		200		
22	TwSY	SYNC Pulse Width	200				

- RxC is RTxC or TRxC, whichever is supplying the receive clock.
 TxC is TRxC or RTxC, whichever is supplying
- the transmit clock. 3. Both RTxC and SYNC have 30 pF capacitors to
- the ground connected to them. 4. Parameter applies only if the data rate is

one-fourth the PCLK rate. In all other cases, no phase relationship between RxC and and PCLK or TxC and PCLK is required. 5. Parameter applies only to FM encoding/

- decoding.
- *Timings are preliminary and subject to change.

Units TcPC TcPC TcPC TcPC	Notes 2 1,2
TcPC	_
	12
TcPC	
	2
TcPC	1,2
ĀS	
TcPC	3
TcPC	1,3
TcPC	3
TcPC	1,3
AS	
ĀŠ	1
ĀŠ	1
supplyi	ing th
3	TcPC TcPC


12

Z8036 Z8000 Z-C10 Product Specification

Page 172 (Page 2) In Pin Description, the PCLK entry, delete the last sentence:

Maximum input frequency is 4MHz.

Page 179 (Page 9) In Figure 10, "Counter/Timer Waveforms," the time constant line is incorrect between TC-2 and 1. A corrected version of the art follows.

In Figure 11, "Master Control Registers," the mnemonics were omitted for bits D_1 and D_5 . They should read, respectively:

Right Justified Addresses (RJA) No Vector (NV)

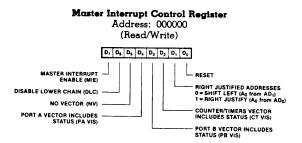


Figure 11. Master Control Registers

In Figure 12, "Port Specification Registers," the Port Mode Specification Registers Addresses should read:

100000 Port A 101000 Port B

The Port Handshake Specification Registers Addresses should read:

100001 Port A 101001 Port B

The Port Command and Status Registers Addresses should read:

001000 Port A 001001 Port B

In Port Mode Specification Registers "PTS2" should read "PTS0." Corrected versions of the art follow.

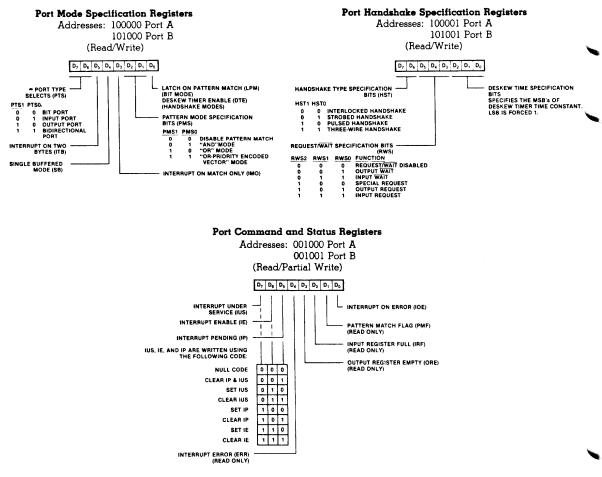
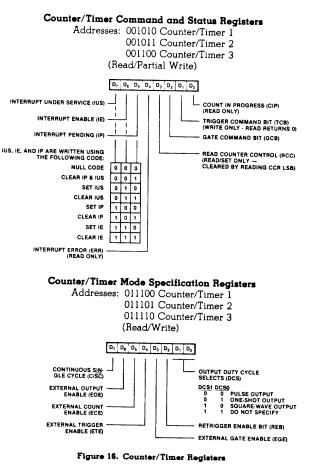



Figure 12. Port Specification Registers

Page 185 (Page 15) In the Register Address Summary add the following note to the Address columns:

*When RJA = 0, A_0 from AD_1 ; when RJA = 1, A_0 from AD_0 .

Delete $({\rm AD}_7-{\rm AD}_0)$ below Address in all cases. Delete XX at the end of the Address in all cases.

In **Most Often Accessed Registers** change Counter/Timer Control to Counter/ Timer Command and Status in all cases. A corrected version of the art follows.

Register Address Summary	Address 000000 000001 000010 000010 000100 000101 000110	Main Control Registers Register Name Master Interrupt Control Master Configuration Control Port A's Interrupt Vector Port B's Interrupt Vector Counter/Timer's Interrupt Vector Port C's Data Path Polarity Port C's Data Direction Port C's Special I/O Control	Address 100000 100001 100010 10010 100101 100101 100110	Port A Specification Registers Register Name Port A's Mode Specification Port A's Handshake Specification Port A's Data Darbert Port A's Data Direction Port A's Special I/O Control Port A's Pattern Polarity Port A's Pattern Transition Port A's Pattern Mask
	Address	Most Often Accessed Registers Register Name	Address	Port B Specification Registers Register Name
	001000 001001 001010 001011 001100 001101 001110 001111	Port A's Command and Status Port B's Command and Status Counter/Timer 1's Command and Status Counter/Timer 2's Command and Status Counter/Timer 3's Command and Status Port A's Data Port B's Data Port C's Data	101000 101001 101010 101011 101100 101101	Port B's Mode Specification Port B's Handshake Specification Port B's Data Path Polarity Port B's Data Direction Port B's Special I/O Control Port B's Pattern Polarity Port B's Pattern Transition Port B's Pattern Mask
	Address	Counter/Timer Related Registers Register Name		
	010000 010001 010010 010011 010100 010111 010110 011011	Counter/Timer 1's Current Count-MSBs Counter/Timer 1's Current Count-LSBs Counter/Timer 2's Current Count-LSBs Counter/Timer 2's Current Count-LSBs Counter/Timer 3's Current Count-LSBs Counter/Timer 3's Current Count-LSBs Counter/Timer 1's Time Constant-LSBs Counter/Timer 2's Time Constant-LSBs Counter/Timer 2's Time Constant-LSBs Counter/Timer 2's Time Constant-LSBs Counter/Timer 3's Mode Specification Counter/Timer 3's Mode Specification Counter/Timer 3's Mode Specification Counter/Timer 3's Mode Specification		

Page 187 (Page 17) In **DC Characteristics** the Maximum rating for Symbol I_{CC} should read 200.

Pages 188-194 (Pages 18-23)

The timing tables for these pages have been revised and expanded to include the 6MHz timing. Corrected versions of the tables follow.

Z-CIO CPU Interface Timing (Page 188)

	C 1 1			MHz		MHz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes
1	TwAS	AS Low Width	70	2000	50	2000	ns	
2	TsA(AS)	Address to AS 🛧 Setup Time	30		10		ns	1
3	ThA(AS)	Address to AS + Hold Time	50		30		ns	1
4	TsA(DS)	Address to DS + Setup Time	130		100			•
5	TsCSO(AS)	CSn to AS + Setup Time	0		0		ns	1
6	ThCSO(AS)	CS_0 to \overline{AS} + Hold Time	60		40		ns	1
7	TdAS(DS)	$\overrightarrow{AS} \uparrow to \overrightarrow{DS} \downarrow Delay$	60 60		. =		ns	1
8	TsCS1(DS)	CS ₁ to DS ↓ Setup Time			40		ns	1
9	TsRWR(DS)	R/W (Read) to DS + Setup Time	100		80		ns	
10	TsRWW(DS)	R/W (Write) to DS + Setup Time	100		80		ns	
11	TwDS	$\overline{\text{DS}}$ Low Width	0		0			
12			390		250		ns	
	TsDW(DSf)	Write Data to DS ↓ Setup Time	30		20		ns	
13	TdDS(DRV)	DS (Read) ↓ to Address Data Bus Driven	0		0			
14	TdDSf(DR)	DS ↓ to Read Data Valid Delay		250		180	ns	
15	ThDW(DS)	Write Data to DS ↑ Hold Time	30		20		ns	
16	TdDSr(DR)	DS ↑ to Read Data Not Valid Delay	0		0			
17	TdDS(DRz)	DS 🛧 to Read Data Float Delay		70		45	ns	2
18	ThR₩(DS)	R/₩ to DS ↑ Hold Time	55		40		ns	~
19	ThCS1(DS)	CS ₁ to DS + Hold Time	55		40		ns	
20	TdDS(AS)	$\overline{\text{DS}}$ + to $\overline{\text{AS}}$ + Delay	50		25			
21	Tre	Valid Access Recovery Time	1000		650		ns ns	3
		Z-CIO Interrupt Timin	9					
22	TdPM(INT)	Pattern Match to INI Delay (Bit Port)		1		1	AS cycle	
23	TdACK(INT)	\overline{ACKIN} to \overline{INI} Delay (Port with Handshake)		4		4	AS cycle	
24	TdCI(INT)	Counter Input to $\overline{ ext{INI}}$ Delay (Counter Mode)		1		1	AS cycle	4
25	TdPC(INT)	PCLK to INT Delay (Timer Mode)		1		1	+ns AS cycle	
26	TdAS(INT)	AS to INT Delay					+ns ns	
		Z-CIO Interrupt Acknowledge	Timing					
27	TsIA(AS)	INTACK to AS + Setup Time	0		0		ns	
28	ThIA(AS)	INTACK to AS + Hold Time	250		250			
	TsAS(DSA)	AS + to DS (Acknowledge) + Setup Time	350		250		ns	-
	TdDSA(DR)	DS (Acknowledge) + to Read Data Valid Delay	<i>)</i>)0	250	200	180	ns	5
-	TwDSA	DS (Acknowledge) V to Kead Data Valid Delay DS (Acknowledge) Low Width	390	270	250	100	ns	
	TdAS(IEQ)	AS A to IEO + Delay (INTACK Cycle)	290	75.0	250	05.0	ns	-
	IdIEI(IEO)	IEI to IEO Delay		350		250	ns	5
	TsIEI(DSA)	IEI to DS (Acknowledge) ↓ Setup Time	100	150	70	100	ns	5
35	ThIEI(DSA)	IEI to DS (Acknowledge) + Setup lime	100		70		ns	5
36	TdDSA(INT)	IEI to DS (Acknowledge) + Hold Time	100	(70		ns	
<i>~</i> 0	TUDOA(INT)	DS (Acknowledge) + to INT + Delay		600		600	ns	

2. Float delay is measured to the time when the output has changed 0.5 V from steady state with minimum ac load and maximum dc load.

- This is the delay from DS + of one CIO access to DS + of another CIO access.
 The delay is from DAV + for 3-Wire Input Handshake. The delay is from DAC + for 3-Wire Output Handshake. One additional AS cycle is the delay is the delay is the delay is the delay is from DAC + for 3-Wire Output Handshake. The delay is the delay is from DAC + for 3-Wire Output Handshake. required for ports in the Single Buffered mode.
- particular daisy chain must meet the following constraint: the delay from $\overline{AS} \uparrow to \overline{DS} \lor$ must _following be greater than the sum of TdAS(IEO) for the highest priority peripheral, TsIEI(DSA) for lowest priority peripheral, and TdIEI(IEO) for each peripheral separating them in the chain.
- *Timings are preliminary and subject to change. All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0".

			4 M	Hz	6 M	Hz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes
1	TsDI(ACK)	Data Input to ACKIN + Setup Time	0		0		ns	
2	ThDI(ACK)	Data Input to ACKIN + Hold Time Strobed Handshake					ns	
3	TdACKf(RFD)	ACKIN + to RFD + Delay	0		0		ns	
4	TwACK1	ACKIN Low WidthStrobed Handshake					ns	
5	TwACKh	ACKIN High WidthStrobed Handshake					ns	
6	TdRFDr(ACK)	RFD + to ACKIN + Delay	0		0		ns	
7	IsDO(DAV)	Data Out to DAV + Setup Time	25		20		ns	1
8	TdDAVf(ACK)	DAV + to ACKIN + Delay	0		0		ns	
9	ThDO(ACK)	Data Out to ACKIN + Hold Time	1		1		AS cycl	е
10	TdACK(DAV)	ACKIN + to DAV + Delay	1		1		AS cycl	е
11	ThDI(RFD)	Data Input to RFD + Hold Time Interlocked Handshake	0		0		ns	
12	TdRFDf(ACK)	RFD + to ACKIN + Delay	0		0		ns	
13	TdACKr(RFD)	Interlocked Handshake ACKIN + (DAV +) to RFD + Delay	0		0		ns	
14	TdDAVr(ACK)	Interlocked and 3-Wire Handshake DAV+to ACKIN + (RFD +)Interlocked	0		0		ns	
		and 3-Wire Handshake						
15	Tdack(DAV)	ACKIN + (RFD +) to DAV + Delay _Interlocked and 3-Wire Handshake	0		0		ns	
16	TdDAVIf(DAC)	DAV + to DAC + Delay-Input 3-Wire Handshake	0		0		ns	
17	ThDI(DAC)	Data Input to DAC + Hold Time	0		0		ns	
18	TdDACOr(DAV)	3-Wire Handshake DAC ↑ to DAV ↑ DelayInput	0		0		ns	
19	TdDAVIr(DAC)	<u>3-</u> Wire Handshake DAV ↑ to DAC ↓ DelayInput	0		0		ns	
20	TdDAVOf(DAC)	<u>3-</u> Wire Handshake DAV + to DAC + DelayOutput	0		0		ns	
		3-Wire Handshake						
21	ThDO(DAC)	Data Output to DAC ↑ Hold Time 3-Wire Handshake	1		1		AS cycl	
22	TdDACIr(DAV)	DAC+to DAV + DelayOutput 3-Wire Handshake	1		1		AS cycl	е
23	TdDAVOr(DAC)	DAV + to DAC + DelayOutput 3-Wire Handshake	0		0		ns	

NOTES: 1. This time can be extended through the use of the deskew timers. *Timings are preliminary and subject to change.

All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0".

Z-C10	Counter/Timer	Timing	(Page	192)
-------	---------------	--------	-------	------

			4	MHz	61	MHz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes*
1	ТсРС	PCLK Cycle Time	250	4000	165	4000	ns	1
2	TwPCh	PCLK High Width	105	2000	70	2000	ns	
3	TwPC1	PCLK Low Width	105	2000	70	2000	ns	
4	TFPC	PCLK Fall Time		20		10	ns	
5	TrPC	PCLK Rise Time		20		15	ns	
6	TcCI	Counter Input Cycle Time	500		330		ns	
7	TCIh	Counter Input High Width	230		150		ns	
8	TwCI1	Counter Input Low Width	230		150		ns	
9	IfCI	Counter Input Fall Time		20		15	ns	
10	TrCI	Counter Input Rise Time		20		15	ns	
11	TsTI(PC)	Trigger Input to PCLK + Setup Time (Timer Mode)					ns	2
12	TsTI(CI)	Trigger Input to Counter Input + Setup Time (Counter Mode)					ns	2
13	TwTI	Trigger Input Pulse Width (High or Low)					ns	
14	TsGI(PC)	Gate Input to PCLK + Setup Time (Timer Mode)					ns	2
15	TsGI(CI)	Gate Input to Counter Input ♦ Setup Time (Counter Mode)					ns	2

No.	Symbol	Parameter	4 MHz		6 MHz			
			Min	Max	Min	Max	Units	Notes*
16	ThGI(PC)	Gate Input to PCLK ♦ Hold Time (Timer Mode)	· · · · · · · · · · · · · · · · · · ·				ns	2
17	ThGI(CI)	Gate Input to Counter Input + Hold Time (Counter Mode)					ns	2
18	TdPC(CO)	PCLK to Counter Output Delay (Timer Mode)					ns	
19	TdCI(CO)	Counter Input to Counter Output Delay (Counter Mode)					ns	

NOTES:

 PCLK is only used with the counter/timers (in Timer mode), the deskew timers, and the REQUEST/WAIT logic. If these functions are not used, the PCLK input can be held Low.

- ----

trigger or gate are valid for the next counter/timer cycle. *Timings are preliminary and subject to change.

2. These parameters must be met to guarantee

*Timings are preliminary and subject to change. All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0".

Z-CIU REQUEST/WAI	l liming (Page 193)

			4 M	4 MHz		Hz		
No.	o. Symbol Parameter	Parameter	Min	Max	Min	Max	Units	Notes*
1	TdDS(REQ)	DS + to REQ + Delay					ns	
2	TdDS(WAIT)	DS + to WAIT + Delay					ns	
3	TdPC(REQ)	PCLK + to REQ + Delay					ns	
4	TdPC(WAIT)	PCLK + to Wait + Delay					ns	
5	TdACK(REQ)	ACKIN + to REQ + Delay					AS cycle	es 1
							+PCLK cyc	cles
							+ns	
6	TdACK(WAIT)	ACKIN ↓ to Wait ↑ Delay					PCLK cycl	les
							+ns	

NOTES:

 The Delay is from DAV + for the 3-Wire Input Handshake. The delay is from DAC + for the 3-Wire Output Handshake.

*Timings are preliminary and subject to change. All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "O".

	Z-CIO Reset Timing								
No.	Symbol	Parameter	Mi	4 M	Hz Max	6 M Min	Hz Max	Units	Notes*
1 2 3	TdDSQ(AS) TdASQ(DS) TwRES	Delay from DS + to AS + for No Reset Delay from AS + to DS + for No Reset Minimum Width of AS and DS both Low for		40 50 50		15 30 170		ns ns ns	1
NOTE 1.	Internal c provided b	ircuitry allows for the reset y the Z8 (DS held Low while AS be sufficient.	*Timings a All timin "1" and O	ng ri	eferenc	es assur	ne 2.Ö		

		Z-CIO Miscellaneous Port Timing (Page 194)						
			4 M	4 MHz		lz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes*
1	IrI	Any Input Rise Time		100		100	ns	
2	IfI	Any Input Fall Time		100		100	ns	
3	Tw1's	1's Catcher High Width	250		170		ns	1
4	TwPM	Pattern Match Input Valid (Bit Port)	750		500		ns	
5	TsPMD	Data Latched on Pattern Match Setup Time (Bit Port)	0		0		ns	
6	ThPMD	Data Latched on Pattern Match Hold Time (Bit Port)	1000		650		ns	

NOTES:

 If the input is programmed inverting, a Lowgoing pulse of the same width will be detected.
 *Timings are preliminary and subject to change.

All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0".

Page 196 (Page 1)	Delete the following from the chapter heading:
	Z8038 Z-BUS™ Version FIO Z8538 Universal Version FIO
Page 202 (Page 8)	In Interrupt Operation add the following paragraph at the end of the text:
	In Z-BUS mode IPs are set by an \overline{AS} following the event.
Page 212 (Page 18)	In Figure 28, "Byte Count Register," add the following note to Byte Counter Register:
	(Read only)
	In Figure 30, "Pattern Match Register," the Address should read:
	1101
Page 213 (Page 19)	Add the following to DC Characteristics between symbols $I_{\mbox{OL}}$ and $I_{\mbox{CC}}$:
	$\begin{array}{c cccc} \underline{Symbol} & \underline{Parameter} & \underline{Min} & \underline{Max} & \underline{Unit} & \underline{Condition} \\ I_{LM} & Mode pins & \pm 100 & \pm 10 & \mu A & 0 < V_{IN} < V_{CC} \\ & input leakage \end{array}$
	In DC Characteristics change the Max reading of $I_{ extsf{CC}}$ from 250 to 200.
Pages 214-24	The timing tables for these pages have been revised and expanded to include

(Pages 20-30)

The timing tables for these pages have been revised and expanded to include the 6 MHz timing. Corrected versions of the tables follow.

			4 M	Hz	6 1	(Hz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes*
1	TwAS	AS Low Width	70		50		ns	
2	TsA(AS)	Address to \overline{AS} + Setup Time	30		10		ns	1
3	ThA(AS)	Address to AS + Hold Time	50		30		ns	1
4	TsCSO(AS)	CS to AS + Setup Time	0		0		ns	1
5	ThCSO(AS)	CS to AS + Hold Time	60		40		ns	1
6	TdAS(DS)	ĀS ↑ to DS ↑ Delay	60		40		ns	1
7	TsA(DS)	Address to $\overline{DS} \neq (\text{with }\overline{AS} + \text{to }\overline{DS} \neq = 60 \text{ ns})$	120		100		ns	
8	TsRWR(DS)	R/₩ (Read) to DS ↓ Setup Time	100		80		ns	
9	TsRWW(DS)	R/₩ (Write) to DS + Setup Time	0		0		ns	
10	TwDS	DS Low Width	390		250		ns	
11	IsDW(DSf)	Write Data to DS + Setup Time	30		20		ns	
12	TdDS(DRV)	DS (Read) ↓ to Address Data Bus Driven	0		0		ns	
13	TdDSf(DR)	DS ↓ to Read Data Valid Delay		250		180	ns	
14	ThDW(DS)	Write Data to DS 🛧 Hold Time	30		20		ns	
15	IdDSr(DR)	DS 🛧 to Read Data Not Valid Delay	0		0		ns	
16	TdDS(DRz)	DS 🛧 to Read Data Float Delay		70		45	ns	2
17	ThRW(DS)	R/W to DS ↑ Hold Time	55		40		ns	
18	TdDS(AS)	DS ↑ to AS ↓ Delay	50		25		ns	
19	Irc	Valid Access Recovery Time	1000		650		ns	3

NOTES:

- Parameter does not apply to Interrupt Acknowledge transactions.
 Float delay is measured to the time when the
- Float delay is measured to the time when the output has changed 0.5 V from steady state with minimum as load and maximum dc load.

3. This is the delay from $\overline{\text{DS}}$ of one CIO access to $\overline{\text{DS}}$ of another FIO access (either read or or write).

*All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0".

Z-FIO	Z-BUS	CPU	Interrupt	Acknowledge	Timing	(Page	215)
-------	-------	-----	-----------	-------------	--------	-------	------

			4 M	4 MHz		6 MHz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes
20	TsIA(AS)	INTACK to AS + Setup Time	0			0	ns	
21	ThIA(AS)	INTACK to AS + Hold Time	250		250		n 8	
22	TdDSA(DR)	DS (Acknowledge) ↓ to Read Data Valid Delay		250		180	ns	
23	TwDSA	DS (Acknowledge) Low Width	390		250		ns	
24	TdAS(IEO)	AS + to IEO + Delay (INTACK Cycle)		350		250	ns	4
25	TdIEI(IEO)	IEI to IEO Delay		150		100	ns	4
26	TsIEI(DSA)	IEI to DS (Acknowledge) + Setup Time	100		70		ns	
27	ThIEI(DSA)	IEI to DS (Acknowledge) 🕈 Hold Time	50		30		กธ	4
28	TdDS(INT)	DS (INTACK Cycle) to INT Delay		900		800	ns	
29	TdDCST	Interrupt Daisy Chain Settle Time					ns	4

NOTES:

4. The parameters for the devices in any particular daisy chain must meet the following constraint: The delay from $\overline{\rm AS}$ to $\overline{\rm DS}$ must be greater than the sum of TdAS(IEO) for

the highest priority peripheral, $\mbox{TsIEI(DSA)}$ for the lowest priority peripheral, and $\mbox{TdIEI(IE0)}$ for each peripheral, separating them in the chain.

			4 MHz	6 Mł	łz		
No.	Symbol	Parameter	Min Max	Min	Max	Units	Notes
30	TdMW(INT)	MW(INT) Message Write to INT Delay	1		1	AS Cycles	5
31	TdDC(INT)	Data Direction Change to INT Delay	1		1	AS Cycles	6
32	TdPMW(INT)	Pattern Match to INT Delay (Write Case)	1		1	AS Cycles +ns	
33	TdPMR(INT)	Pattern Match (Read Case) to INT Delay	1		1	AS Cycles +ns	
34	TdSC(INT)	Status Compare to INT Delay	1		1	AS Cycles +ns	6
35	TdER(INT)	Error to INT Delay	1		1	AS Cycles +ns	
36	TdEM(INT)	Empty to INT Delay	1		1	AS Cycles	6
37	TdFL(INT)	Full to INT Delay	1		1	AS Cycles	6
38	TdAS(INT)	AS to INT Delay				AS Cycles	

NOTES:

5. Write is from the other side of FIO.
 6. Write can be from either side, depending

on programming of FIO.

21

Z-FIO Request/Wait Timing (Page 217)

			4 MHz	6	MHz		
No.	Symbol	Parameter	Min Ma	x Min	Max	Units	Notes
1	TdDS(WAIT)	AS + to WAIT + Delay	19	20	160	ns	
2	TdDS1(WAIT)	DS1 + to WAIT + Delay	100		1000	ns	
3	TdACK(WAIT)	ACKIN + to WAIT + Delay	100	0	1000	ns	1
4	TdDS(REQ)	DS ↓ to REQ ↑ Delay	35	0	300	ns	
5	TdDMA(REQ)	DMASTB + to REQ + Delay	35	0	300	ns	
6	TdDS1(REQ)	DS1 + to REQ + Delay	100	00	1000	ns	
7	TdACK(REQ)	ACKIN ↓ to REQ ↓ Delay	100	10	1000	ns	
8	TdSU(DMA)	Data Setup Time to DMASTB	200	150		ns	
9	TdH(DMA)	Data Hold Time to DMASTB	30	20		ns	
10	TdDMA(DR)	DMASTB + to Valid Data	15	50	100	ns	
11	TdDMA(DRH)	DMASTB + to Data Not Valid	0	0		ns	
12	TdDMA(DR2)	DMASTB 🛧 to DATA Bus Float	-	70	45	ns	

NOTES:

 The delay is from DAV for 3-Wire Input Handshake. The delay is from DAC for 3-Wire Handshake.

			4 M	Hz	6 M	Hz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes
1	TdDSQ(AS)	Delay from $\overline{\text{DS}}$ + to $\overline{\text{AS}}$ + for No Reset	40		20		ns	
2	TdASQ(DS)	Delay for AS ↑ to DS ↓ for No Reset	50		30		ns	
3	Tw(AS + DS)	Minimum Width of AS and DS Both Low for Reset	500		350		ns	1

1. Internal circuitry allows for the reset provided by the Z8 ($\overline{\text{DS}}$ held Low while $\overline{\text{AS}}$

pulses) to be sufficient.

			4 M	Hz	6 M	Hz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Note
1	TsA(RD)	Address Setup to RD ↓	80		80		ns	1
2	TsA(WR)	Address Setup to WR +	80		80		ns	
3	ThA(RD)	Address Hold Time to RD +	0		0		ns	1
4	ThA(WR)	Address Hold Time to WR 🕇	0		0		ns	
5	TsCEI(RD)	CE Low Setup Time to RD	0		0		ns	1
6	TsCEI(WR)	CE Low Setup Time to WR	0		0		ns	
7	ThCEI(RD)	CE Low Hold Time to RD	0		0		ns	1
8	ThCEI(WR)	CE Low Hold Time to WR	0		0		ns	
9	TsCEh(RD)	CE High Setup Time to RD	100		70		ns	1
10	TsCEh(WR)	CE High Setup Time to WR	100		70		ns	
11	TwRD1	RD Low Width	390		250		ns	
12	TdRD(DRA)	RD ∔ to Read Data Active Delay	0		0		ns	
13	TdRDf(DR)	RD ↓ to Valid Data Delay		250		180	ns	
14	TdRDr(DR)	RD + to Read Data Not Valid Delay	0		0		ns	
15	TdRD(DRz)	RD ↑ to Data Bus Float		70		45	ns	2
16	TwWR1	WR Low Width	390		250		ns	
17	TsDW(WR)	Data Setup Time to WR	0		0		ns	
18	ThDW(WR)	Data Hold Time to WR	30		20		ns	
19	Tre	Valid Access Recovery Time	1000		650		ns	3

NOTES:

1.	Parameter does not apply to Interrupt	
	Acknowledge transactions.	3
2.	Float delay is measured to the time the output	
	has changed 0.5 V from steady state with	

minimum ac load and maximum dc load.

 This is the delay from RD + to WR + of one FIO access to RD + or WR + of another FIO access.

Z-FIO Non Z-BUS Interrupt Acknowledge Timing (Page 219)

			4 M	Hz	6 M	Hz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes
20	TdIEI(IEO)	IEI to IEO Delay		150		100	ns	4
21	TdI(IEO)	INTACK + to IEO + Delay		350		250	ns	4
22	TsIEI(RDA)	IEI Setup Time to RD (Acknowledge)	100		70		ns	4
23	TdRD(DR)	RD ↓ to Vector Valid Delay		250		180	ns	
24	TwRD1(IA)	Read Low Width (Interrupt Acknowledge)	390		250		ns	
25	ThIA(RD)	INTACK + to RD + Hold Time	30		20		ns	
26	ThIEI(RD)	IEI Hold Time to RD +	20		10		ns	
27	TdRD(INT)	RD 🛧 to INT 🛧 Delay		900		800	ns	
28	TdDCST	Interrupt Daisy Chain Settle Time		350		250	ns	4

NOTES:

4. The parameter for the devices in any particular daisy chain must meet the following constraint: The delay from \overline{INTACK} + to \overline{RD} + must be greater than the sum of TdINA(IEO) for the highest

priority peripheral, <code>TsIEI(RD)</code> for the lowest priority peripheral, and <code>TdIEI(IEO)</code> for each peripheral separating them in the chain.

			4 M	Hz	6 M	Hz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes
29	TdMW(INT)	Message Write to INT Delay					ns	5,6
30	TdDC(INT)	Data Direction Change to INT Delay					ns	5,7
31	TdPMW(INT)	Pattern Match (Write Case) to INT Delay					ns	´ 5
32	TdPMR(INT)	Pattern Match (Read Case) to INT Delay					ns	5
33	TdSC(INT)	Status Compare to INI Delay					ns	5,7
34	TdER(INT)	Error to INT Delay					ns	5,7
35	TdEM(INT)	Empty to INT Delay					ns	5,7
36	TdFL(INT)	Full to INT Delay					ns	5,7
37	TdSO(INT)	State O to INT Delay					ns	,

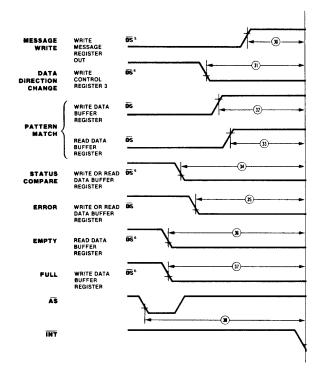
Delay number is valid for State O only.
 Write is from other side of FIO.

7. Write can be from either side, depending on programming of FIO.

			4 Mi	lz	6 M	Hz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes
1	TdRD(WT)	CE + to WAIT Active		200		170	ns	
2	TdRD1(WT)	RD1 ↑ or WR1 ↑ to WAIT Inactive		1000		1000	ns	
3	TdACK(WT)	ACKIN + to WAIT Inactive		1000		1000	ns	1
4	TdRD(REQ)	RD 🕴 or WR 🕴 to REQ Inactive		350		300	ns	
5	TdRD1(REQ)	RD1 ↑ or ₩R1 ↑ to REQ Active		1000		1000	ns	
6	TdACK(REQ)	ACKIN + to REQ Active		1000		1000	ns	
7	TdDAC(RD)	DACK + to RD + or WR +	100		80		ns	
8	TSU(WR)	Data Setup Time to WR	200				ns	
9	Th(WR)	Data Hold Time to WR	30			20	ns	
10	TdDMA	RD ↓ to Valid Data		150		100	ns	2
11	TdDMA(DRH)	RD 🕈 to Data Not Valid	0		0		ns	2
12	TdDMA(DRZ)	RD ↑ to Data Bus Float		70		45	ns	2

1.	The delay i	is from DAV + for 3-Wire Input	Input Handshake.
	Handshake.	The delay is from DAC + for 3-Wire	Only when DACK is active.

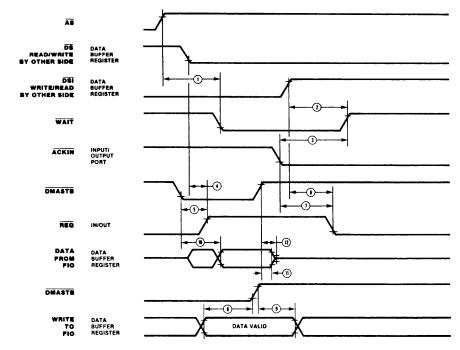
Z-FIO Non-Z-BUS Reset Timing (Page 222)


			4 M	Hz	6 M	Hz	
No.	Symbol	Parameter	Min	Max	Min	Max	Units
1	TdWR(RD)	Delay from WR + to RD +	100		70		ns
2	TdRD(WR)	Delay from RD + to WR +	100		70		ns
3	TwRD + WR	Width of RD and WR, both Low for Reset	500		350		ns

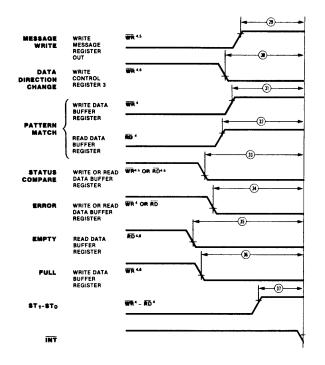
		Z-FIO Port 2 Side Operation					
1	TwCLR TdOE(D0)	Width of Clear to Reset FIFO $\overline{OE} \downarrow$ to Data Bus Driven	700 0	700 0	ns ns		
3	TdOE(DRZ)	OE 🕇 to Data Bus Float			ns		

		Z-FIO 2-Wire Handshake Timing	(Page 223)				
			4 M	Hz	6 M	Hz	
No.	Symbol	Parameter	Min	Max	Min	Max	Unite
1	TsDI(ACK)	Data Input to ACKIN ↓ to Setup Time	50		50		ns
2	TdACKf(RFD)	ACKIN + to RFD + Delay	0	500	0	500	ns
3	TdRFDr(ACK)	RFD + to ACKIN + Delay	0		0		ns
4	TsDO(DAV)	Data Out to DAV + Setup Time	25		25		ns
5	TdDAVf(ACK)	DAV + to ACKIN + Delay	0		0		ns
6	ThDO(ACK)	Data Out to ACKIN Hold Time	50		50		ns
7	TdACK(DAV)	ACKIN + to DAV + Delay	0	500	0	500	ns
8	ThDI(RFD)	Data Input to RFD + Hold Time	0		0		ns
9	TdRFDf(ACK)	RFD + to ACKIN + Delay	0		0		ns
10	TdACKr(RFD)	ACKIN + (DAV +) to RFD + Delay	0	400	0	400	ns
		Interlocked and 3-Wire Handshake					
11	TdDAVr(ACK)	DAV + to ACKIN + (RFD +)	0		0		ns
12	TdACKr(DAV)	ACKIN + to DAV +	0	800	0	800	ns

		Z-FIO 3-Wire Handshake Timing	(Page 224)				
			4 M	Hz	6 M	Hz	
No.	Symbol	Parameter	Min	Max	Min	Max	Units
1	TsDI(DAV)	Data Input to DAV ↓ Setup Time	50		50		ns
2	TdDAVIf(RFD)	DAV + to RFD + Delay	0	500	0	500	ns
3	TdDAVf(DAC)	DAV + to DAC + Delay	0	500	0	500	ns
4	ThDI(DAC)	Data In to DAC + Hold Time	0		0		ns
5	TdDACIr(DAV)	DAC 🕇 to DAV 🛧 Delay	0		0		ns
6	TdDAVIr(DAC)	DAV + to DAC + Delay	0	500	0	500	ns
7	TdDAVIr(RFD)	DAV + to RFD + Delay	0	500	0	500	ns
8	TdRFDI(DAV)	RFD + to DAV + Delay	0		0		ns
9	TsDO(DAC)	Data Out to DAV↓					ns
10	TdDAVOf(RFD)	DAV + to RFD + Delay	0		0		ns
11	TdDAVOf(DAC)	DAV + to DAC + Delay	0		0		ns
12	ThDO(DAC)	Data Out to DAC + Hold Time					ns
13	TdDACOr(DAV)	DAC + to DAV + Delay		400		400	ns
14	TdDAVOr(DAC)	DAV + to DAC + Delay	0		ប		ns
15	TdDAVOr(RFD)	DAV + to RFD + Delay	0		0		ns
16	TdRFD0(DAV)	RFD + to DAV + Delay	0	800	0	800	ns

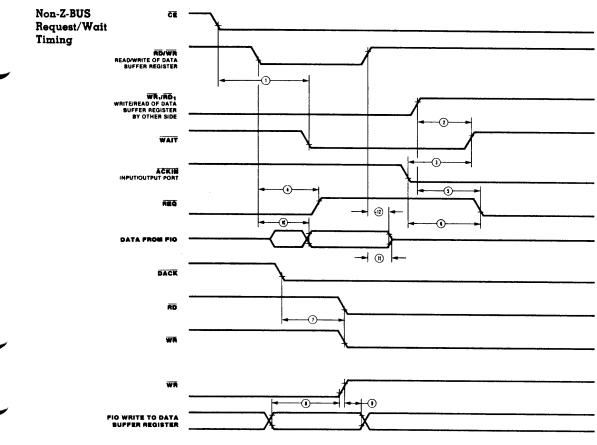

Page 216 (Page 22) The timing diagram is incorrect for parameters 30, 31, 36, and 37 for the Z-BUS Interrupt Timing diagram. A corrected version of the art follows.

Page 217 (Page 23)


In Z-BUS Request/Wait Timing change the parameter in number 1 from $\overline{\text{DS}}$ to $\overline{\text{AS}}$.

The Z-BUS Request/Wait Timing diagram is incorrect for parameter 1. A corrected version of the art follows.

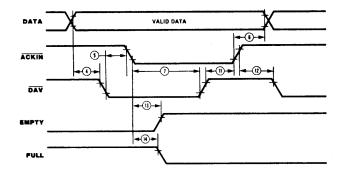
Z-BUS Request/Wait Timing


The timing diagram for Non-Z-BUS Interrupt Timing is incorrect for parameters 29, 30, 35, and 36. A corrected version of the art follows.

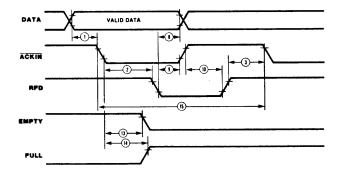
Page 221 (Page 27) In Non-Z-BUS Request/Wait Timing, number 1 parameter should read:

CE + to WAIT Active.

The timing diagram is incorrect for parameter 1. A corrected version of the art follows.

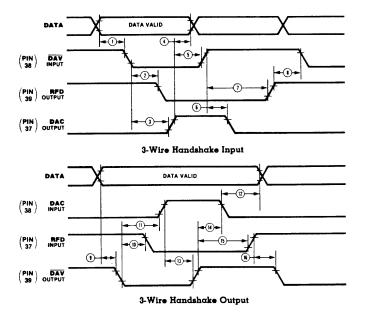


^{*}Whichever signal is later


Page 223 (Page 29) Add the following to the FIO 2-Wire Handshake Timing table:

Number	Symbol	Parame	ter	<u>Min</u>
13	IdACK(Empty)	ACKIN	to Empty	
14	TdACK(Full)	ACKIN	to Full	
15	ACKIN Clock Rate			1.0

Both timing diagrams are incorrect. Corrected versions of the art follow.



2-Wire Handshake (Port 2 Side Only) Output

2-Wire Handshake (Port 2 Side Only) Input

Page 224 (Page 30) To the timing diagrams for 3-Wire Handshake add the pin numbers as illustrated in the following corrected versions of the art.

Page 225 (Page 31)

Page 244

(Page 12)

Delete from Ordering Information all Product Numbers, Package/Temp, Speed and Description Information. Delete from Product Numbers Z8038 and Z8038A the information in parentheses:

(Z-BUS compatible 40-pin).

Page 237 (Page 5) Page 238 (Page 6)	In the second column, paragraph 2, sentence 2, IRQ ₆ should read IRQ ₀ .
2	
	In Block Access the first paragraph, sentences one and two should read: The master CPU may transmit or receive blocks of data via address xxx10101 (xx10101x shifted). When the master CPU accesses this address, the Z-UPC register pointed to by the Data Indirection register is decremented, for example, when the master CPU issues a read or write to address xxx10101 while the Data Indirection register contains the value 33H. In Table 3, "Master CPU/Z-UPC Register Map," change Decimal line @5** to
	read:
	Decimal Hex Identifier Address Address @5** @5H** xxx10101 xx10101x

In Figure 12, "Port Mode Registers," R247 P3M, Port 3 Mode Register, for bit $\mathsf{D}_2,$ 1 P_{35} should read:

 $1 P_{35} = \overline{INT}$.

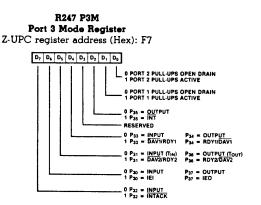


Figure 12. Port Mode Registers

Page 245 (Page 13) In Figure 16, "Master CPU-Z-UPC Data Transfer Registers," RO DIC, the labels for ${\rm D}_2$ and ${\rm D}_1$ have been reversed. A corrected version of the art follows.

R0 DTC Data Transfer Control Register Z-UPC register address (Hex): 00

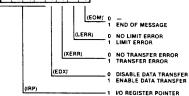


Figure 16. Master CPU-Z-UPC Data Transfer Registers

Page 246 (Page 14)	For Control Register $F7_{H}$ Comment $P3_{5} = INT$ should read $P3_{5} = \overline{INT}$.
Page 247 (Page 15)	To DC Characteristics add the following note:
	* For Protopak versions $I_{\mbox{CC}}$ = 180 μA plus the current for the memory IC used.
Pages 248-250	The timing tables for these pages have been revised and expanded to include
(Page 16-18)	the 6 MHz timing. Corrected versions of the tables follow.

Z-UPC Master CPU Interface Timing (Page 248)

No.	Symbol	Parameter		MHz) Max(ns)		MHz) Max(ns)	Notes*
1	TrC	Clock Rise Time		20		15	
2	TwCh	Clock High Width	105	1855	70	1855	
3	TfC	Clock Fall Time		20		10	
4	TwC1	Clock Low Width	105	1855	70	1855	
5	ТрС	Clock Period	250	2000	165	2000	
6	TsCS(AS)	CS to AS + Setup Time	0		0		1
7	ThCS(AS)	CS to AS ↑ Hold Time	60		40		1
8	TsA(AS)	Address to AS † Setup Time	30		10		1
9	ThA(AS)	Address to AS 🛧 Hold Time	50		30		1
10	TwAS	AS Low Width	70		50		
11	TdDS(DR)	DS↑ to Read Data Not Valid	0		0		
12	TdDS(DRz)	DS↑ to Read Data Float Delay		70		45	2
13	TdAS(DS)	AS↑ to DS↓ Delay	60	2095	40	2095	
14	TdDS(AS)	DS↑ to AS↓ Delay	50		35		
15	ThDW(DS)	Write Data to DS + Hold Time	30		20		1
16	TdDS(DR)	DS↓ to Read Data Valid Delay					3
17	TdAz(DS)	Address Float to DS Delay	0		0		
18	TwDS	DS Low Width	390		250		
19	TsRWR(DS)	R/₩ (Read) to DS + Setup Time	100		80		
20	TsRWW(DS)	R/₩ (Write) to DS + Setup Time	0		0		
21	TsD₩(DSf)	Write Data to DS ↓ Setup Time	30		20		
22	TdAS(W)	AS↑ to ₩AIT↓ Valid Delay		195		160	
23	ThRW(DS)	R/₩ to DS + Hold Time	60		40		
24	TsDR(W)	Read Data Valid to WAIT †	0		0		

Z-UPC Interrupt Acknowledge Timing

24	TsIA(AS)	INTACK to AS ↑ Setup Time	0		0	
26	ThIA(AS)	INTACK to AS + Hold Time	250		250	
27	TdAS(DSA)	AS + to DS + (Acknowledge) Delay	940		200	
28	TdDSA(DR)	DS + (Acknowledge) to Read Data Valid Delay		360		180
29	TwDSA	DS ↓ (Acknowledge) Low Width	475		250	
30	TdAS(IEO)	AS + to IEO Delay		290		250
31	TdIE1f(IEO)	IEI to IEO Delay		120		100
32	TsIEI(DSA)	IEI to DS + (Acknowledge) Setup Time	150		120	100
33	TdDS(INT)	DS + to INT Delay		500		500
34	<pre>IhIEI(DS)</pre>	IEI to DS + Hold Time	100		100	

NOTES:

1. Parameter does not apply to Interrupt Acknowledge transactions.

 The maximum value for TdAS(DS) does not apply to Interrupt Acknowledge transactions.

3. This parameter is dependent on the state of UPC

at the time of master CPU access.

- The timing characteristics given reference 2.0 V as High and 0.8 V as Low.
- 5. All output ac parameters use test load 1.
- *Timings are preliminary and subject to change.

Z-UPC	Handshake	Timing	(Page	250)
-------	-----------	--------	-------	------

No	Symbol	Parameter		MHz Max(ns)		MHz Max(ns)	Notes*
			min(ns)		MTU(UR)	max(ns)	NOLES
1	TsDI(DA)	Data In Setup Time	0		0		
2	ThDA(DI)	Data In Hold Time	230		230		
3	TwDA	Data Available Width	175		175		1,2
4	TdDAL(RY)	Data Available Low To Ready	20	175	20	175	1,2
		Delay Time	0		0		2,3
5	TdDAH(RY)	Data Available High to Ready		150		150	1,2
		Delay Time	0		0		2,3
6	TdDO(DA)	Data Out to Data Available Delay Time	50		50		2
7	TdRY(DA)	Ready to Data Available Delay Time	0	205	0	205	2
		Z-UPC Reset Timing					
1	TdRDQ(WR)	Delay from DS † to AS † for No Reset	40		35		
2	TdWRQ(RD)	Delay from AS ↑ to DS ↓ for No Reset	50		35		
3	Twres	Minimum Width of AS and DS both Low	250		250		4
		for Reset					
		Z-UPC RAM Version Program Memory	y Timing				
1	TwMAS	Memory Address Strobe Width	60		55		5
2	TdA(MAS)	Address Valid to Memory Address Strobe † Delay	30		30		5
3	TdMR/W(MAS)	Memory Read/Write to Memory Address Strobe † Delay	30		30		5
4	TdMDS(A)	Memory Data Strobe + to Address Change Delay	60		60		
5	TDMDS(MR/W)	Memory Data Strobe † to Memory Read/Write Not Valid Delay	80		75		
6	Tw(MDS)	Memory Data Strobe Width (Write Case)	160		110		6
7	TdDO(MDS)	Data Out Valid to Memory Data Strobe + Delay	30		30		5
8	IdMDS(D0)	Memory Data Strobe 🕇 to Data Out Change Delay	30		30		5
9	Tw(MDS)	Memory Data Strobe Width (Read Case)	230		230		6
10	TdMDS(DI)	Memory Data Strobe 🕴 to Data In Valid Delay		160		130	7
11	TdMAS(DI)	Memory Address Strobe ↑ to Data In Valid Delay		180		220	7
12	ThMDS(DI)	Memory Data Strobe † to Data In Hold Time	0		0		
13	TwSY	Instruction Sync Out Width	160		100		
14	TdSY(MDS)	Instruction Sync Out to Memory Data Strobe Delay	y 200		160		
16	TT	Tehennuch Designation Dest 7 T 1 Million	400		400		

15 TwI

- 1. Input Handshake.
- 2. Test Load 1.

3. Output Handshake.

4. Internal reset signal is 1/2 to 2 clock delays from external reset condition.

Interrupt Request via Port 3 Input Width

- Delay times are specified for an input clock frequency of 4MHz. When operating at a lower frequency, the increase in input clock period must be added to the specified delay time.
- Data strobe width is specified for an input clock frequency of 4 MHz. When operating at a lower frequency, the increase in three input

clock periods must be added to the specified width. Data strobe width varies according to the instruction being executed.

100

 Address strobe and data strobe to data in valid delay times represent memory system access times and are given for a 4 MHz input frequency.

100

- All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0".
- 9. All output ac parameters use test load 2.

*Timings are preliminary and subject to change.

Pages 274-278 (Pages 16-20) The timing tables for this page have been revised and expanded to include the 6 MHz timing. Corrected versions of the tables follow.

No.	Symbol	Parameter		MHz Max(ns)		5 MHz 3) Max(ns)	Notes*
1	TwPC1	PCLK Low Width	105	2000	70	1000	
2	TwPCh	PCLK High Width	105	2000	70	1000	
3	TfPC	PCLK Fall Time		20		10	
4	TrPC	PCLK Rise Time		20		15	
5	TcPC	PCLK Cycle Time	250	4000	165	2000	
6	TsA(WR)	Address to WR + Setup Time	80		80		
7	ThA(WR)	Address to WR + Hold Time	0		0		
8	TsA(RD)	Address to RD + Setup Time	80		80		
9	ThA(RD)	Address to RD + Hold Time	0		0		
10	TsIA(PC)	INTACK to PCLK + Setup Time	0		0		
11	TsIAi(WR)	Intack to WR + Setup Time	200		200		1
12	ThIA(WR)	INTACK to WR + Hold Time	0		0		
13	TsIAi(RD)	Intack to RD + Setup Time	200		200		1
14	ThIA(RD)	INTACK to RD + Hold Time	0		0		
15	ThIA(PC)	INTACK to PCLK + Hold Time	100		100		
16	TsCE1(WR)	CE Low to ₩R + Setup Time	0		0		
17	ThCE(WR)	CE to WR + Hold Time	0		0		
18	TsCEh(WR)	CE High to ₩R + Setup Time	100		70		
19	TsCE1(RD)	CE Low to RD + Setup Time	0		0		1
20	ThCE(RD)	CE to RD + Hold Time	0		0		1
21	TsCEh(RD)	CE High to RD + Setup Time	100		70		1
22	TwRD1	RD Low Width	390		250		1
23	TdRD(DRA)	RD + to Read Data Active Delay	0		0		
24	TdRDr(DR)	RD + to Read Data Not Valid Delay	0		0		
25	TdRDf(DR)	RD + to Read Data Valid Delay		250		180	
26	TdRD(DRz)	RD + to Read Data Float Delay		70		45	2

NOTES:

1. Parameter does not apply to Interrupt Acknowledge transactions.

for a ± 0.5 V change in the output with a maximum de load and minimum ac load.

2.	Float	delay	is	defined	88	the	time	required
----	-------	-------	----	---------	----	-----	------	----------

		SCC Cycle Timing (Page	275)		
No.	Symbol	Parameter	4 MHz Min(ns) Max(ns)	6 MHz Min(ns) Max(ns)	Notes*
27	TdA(DR)	Address Required Valid to Read Data Valid Delay	590	420	
28	TwWR1	WR Low Width	390	250	
29	TsDW(WR)	Write Data To WR + Setup Time	0	0	
30	ThDW(WR)	Write Data to \overline{WR} + Hold Time	0	0	
31	TdWR(W)	WR ↓ to Wait Valid Delay	240	200	4
32	TdRD(W)	RD ↓ to Wait Valid Delay	240	200	4
33	TdwRf(REQ)	WR + to W/REQ Not Valid Delay	240	200	
34	TdRDf(REQ)	RD + to W/REQ Not Valid Delay	240	200	
35	TdWRr(REQ)	WR + to DTR/REQ Not Valid Delay	5TcPC +300	5TcPC +250	
36	TdRDr(REQ)	\overline{RD} + to $\overline{DTR}/\overline{REQ}$ Not Valid Delay	5TcPC +300	5TcPC +250	
37	TdPC(INT)	PCLK ↓ to INT Valid Delay	500	500	4
38	TdIAi(RD)	INTACK to RD + (Acknowledge) Delay			5
39	TwRDA	RD (Acknowledge) Width	285	250	
40	TdRDA(DR)	RD + (Acknowledge) to Read Data Valid Delay	190	180	
41	TsIEI(RDA)	IEI to RD + (Acknowledge) Setup Time	120	100	
42	ThIEI(RDA)	IEI to RD + (Acknowledge) Hold Time	0	0	
43	TdIEI(IEO)	IEI to IEO Delay Time	120	100	
44	TdPC(IEO)	PCLK + to IEO Delay	250	250	
45	TdRDA(INT)	RD + to INT Inactive Delay	500	500	4
46	TdRD(WRQ)	RD + to WR + Delay for No Reset	30	15	

No.	Symbol	Parameter	4 MHz Min(ns) Max(ns)	6 MHz Min(ns) Max(ns)	Notes*
47	TdWRQ(RD)	\overline{WR} \uparrow to \overline{RD} \downarrow Delay for No Reset	30	30	
48	TwRES	WR and RD Coincident Low for Reset	250	250	
49	Irc	Valid Access Recovery Time	6TcPC	6TcPC	
			+200	+130	3

 Parameter applies only between transactions involving the SCC.
 Open-drain output, measured with open-drain

- 4. Open-drain output, measured with open-drain test load.
- 5. Parameter is system dependent. For any SCC in the daisy chain, ${\sf TdIAi}({\sf RD})$ must be greater

than the sum of TdPC(IEO) for the highest priority device in the daisy chain, TsIEI(RDA) for the SCC, and TdIEIf(IEO) for each device separating them in the daisy chain.

* Timings are preliminary and subject to change.

No.	Symbol	Parameter		MHz) Max(ns)		MHz Max(ns)	Notes
1	TdPC(REQ)	PCLK ↓ to ₩/REQ Valid Delay		250	······································	250	· · · · · · · · · · · · · · · · · · ·
2	TdPC(W)	<u>PCL</u> K ↓ to Wait Inactive Delay		350		350	
3	TsRXC(PC)	RxC + to PCLK + Setup Time	50		50		1,4
4	TsRXD(RXCr)	RxD to RxC + Setup Time (X1 Mode)	0		0		1
5	ThRXD(RXCr)	RxD to RxC + Hold Time (X1 Mode)	150		150		1
6	IsRXD(RXCf)	RxD to RxC + Setup Time (X1 Mode)	0		0		1,5
7	ThRXD(RXCf)	RxD to RxC ↓ Hold Time (X1 Mode)	150		150		1,5
8	TsSY(RXC)	SYNC to RxC + Setup Time	-200		-200		1
9	ThSY(RXC)	SYNC to RXC + Hold Time	3TcPC		3TcPC		
			+200		+200		1
0	IsIXC(PC)	TxC + to PCLK ↑ Setup Time	0		0		
11	TdTXCf(TXD)	TxC ↓ to TxD Delay (X1 Mode)		300		300	2,4 2
12	TdTXCr(TXD)	TxC + to TxD Delay (X1 Mode)		300		300	2,5
13	TdTXD(TRX)	IxD to TRxC Delay (Send Clock Echo)					-,-
14	TwRTXh	RTxC High Width	180		180		
5	TwRTX1	RTxC Low Width	180		180		
6	TcRTX	RTxC Cycle Time	400		400		
7	TeRTXX	Cystal Oscillator Period	250	1000	250	1000	3
8	TwTRXh	TRxC High Width	180		180		
9	TwTRX1	TRxC Low Width	180		180		
20	TeTRX	TrxC Cycle Time	400		400		
!1	Twext	DCD or CTS Pulse Width	200		200		
22	TwSY	SYNC Pulse Width	200		200		

SCC General Timing (Page 276)

one-fourth the PCLK rate. In all other cases, no phase relationship between RxC and PCLK or TxC and PCLK is required.

*Timings are preliminary and subject to change.

SCC System	Timing	(Page	278))
------------	--------	-------	------	---

		4 MHz		6 MHz				
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes*
1	TdRXC(REQ)	RxC + to W/REQ Valid Delay	8	12	8	12	TePC	2
2	TdRXC(W)	RxC † to Wait Inactive Delay	â	12	8	12	TCPC	1,2
3	TdRXC(SY)	RxC + to SYNC Valid Delay	4	7	4	7	TePC	',2
4	TdRXC(INT)	RxC + to INT Valid Delay	10	16	10	16	TCPC	1,2
5	TdTXC(REQ)	TxC + to W/REQ Valid Delay	5	8	5	8	TcPC	',2
6	TdTXC(W)	TxC + to Wait Inactive Delay	5	8	5	8	TePC	1.3
7	TdTXC(DRQ)	TxC + to DTR/REQ Valid Delay	4	7	4	7	TePC	3
8	TdTXC(INT)	TxC + to INT Valid Delay	6	10	6	10	TePC	1.3
9	TdSY(INT)	SYNC Transition to INT Valid Delay	2	6	2	6	TePC	1,1
10	TdEXT(INT)	DCD or CTS Transition to INT Valid Delay	2	6	2	6	TePC	1

NOTES:

2.

1. Open-drain output, measured with open-drain test load.

the receive clock.

the transmit clock.

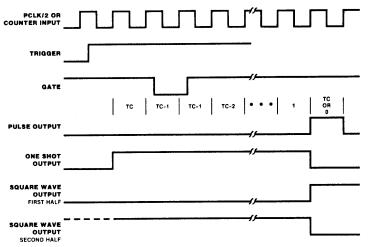
ground connected to them.

 RxC is RTxC or TRxC, whichever is supplying the receive clock.

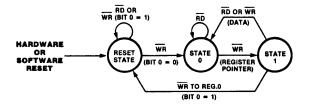
TxC is TRxC or RTxC, whichever is supplying

3. Both RTxC and SYNC have 30 pF capacitors to

4. Parameter applies only if the data rate is


3. TxC is TRxC or RTxC, whichever is supplying the transmit clock.

*Timings are preliminary and subject to change.


^{5.} Parameter applies only to FM encoding/ decoding.

Z8536 CIO Product Specificaton

Page 289 (Page 9) In Figure 10, "Counter/Timer Waveforms," the time constant line is incorrect between TC-2 and 1. A corrected version of the art follows.

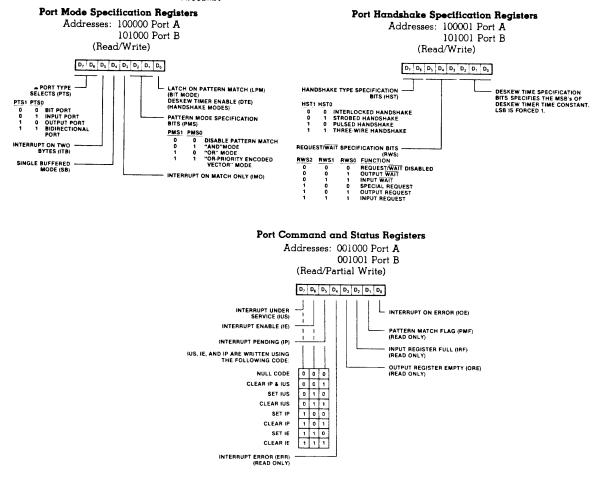
Page 291 (Page 11) Figure 11, "State Machine Operation," is incorrect. A corrected version of the art follows.

In Figure 13, "Port Specification Registers," Port Mode Specification Registers, Addresses should read:

100000A Port A 101000 Port B

Delete "Partial" from the parentheses; and change "PTS2" to "PTS0."

In Port Handshake Specifications Registers, the Addresses should read:


100001 Port A 101001 Port B

In Port Command and Status Registers, the Address should read:

001000 Port A 101001 Port B

Page 292 (Page 12) In parentheses delete "Write" and add "Partial Write."

The format for this register is incorrect. A corrected version of the art follows.

Figure 13. Port Specification Registers

In Figure 17, "Counter/Timer Registers," the Counter/Timer Mode Command and Status Registers, the Address should read:

001010 Counter/Timer 1 001011 Counter/Timer 2 001100 Counter/Timer 3

In the same figure, Counter/Timer Mode Specifications Registers, the Addresses should read:

011100 Counter/Timer 1 011101 Counter/Timer 2 011110 Counter/Timer 3

Also, DSC1 should read DCS1.

A corrected version of the art follows.

Page 294 (Page 14)

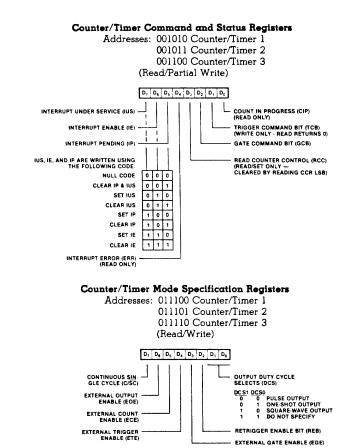


Figure 17. Counter/Timer Registers

Page 295 (Page 15) In the Register Address Summary:

Delete AD_7-AD_0 in all cases. Delete the XX at the end of each address in all cases.

In **Most Often Accessed Registers** change Counter/Timer Control to Counter/ Timer Command and Status in all cases. A corrected version of the table follows.

Register Address Summary	Address 000000 000010 000010 000011 000100 000101 000110 000111	Main Control Registers Register Name Master Interrupt Control Master Configuration Control Port A's Interrupt Vector Port B's Interrupt Vector Counter/Timer's Interrupt Vector Port C's Data Path Polarity Port C's Data Direction Port C's Special I/O Control	Address 100000 100010 10010 10010 100100 100101 100110 100111	Port A Specification Registers Register Name Port A's Mode Specification Port A's Handshake Specification Port A's Data Path Polarity Port A's Data Direction Port A's Special I/O Control Port A's Pattern Polarity Port A's Pattern Transition Port A's Pattern Mask
	Address	Most Often Accessed Registers Register Name	Address	Port B Specification Registers Register Name
	001000 001001 001010 001011 001100 001101 001110	Port A's Command and Status Port B's Command and Status Counter/Timer 1's Command and Status Counter/Timer 2's Command and Status Counter/Timer 3's Command and Status Port A's Data (can be accessed directly) Port B's Data (can be accessed directly) Port C's Data (can be accessed directly)	101000 101001 101010 101011 101100 101101	Port B's Mode Specification Port B's Madshake Specification Port B's Data Path Polarity Port B's Data Direction Port B's Special I/O Control Port B's Pattern Polarity Port B's Pattern Transition Port B's Pattern Mask
	Address	Counter/Timer Related Registers Register Name		
	010000 010011 010010 010011 010100 010110 010111 011000 011011	Counter/Timer 1's Current Count-MSBs Counter/Timer 1's Current Count-LSBs Counter/Timer 2's Current Count-LSBs Counter/Timer 2's Current Count-LSBs Counter/Timer 3's Current Count-LSBs Counter/Timer 1's Time Constant-MSBs Counter/Timer 1's Time Constant-LSBs Counter/Timer 1's Time Constant-LSBs Counter/Timer 2's Time Constant-LSBs Counter/Timer 3's Mode Specification Counter/Timer 3's Mode Specification Counter/Timer 3's Mode Specification		

011110 Counter/Timer 3 011111 Current Vector

Page 297 (Page 17) In DC Characteristics the Maximum rating for symbol $I_{
m CC}$ should read 200.

Pages 298-304 (Pages 18-24) The timing tables for these pages have been revised and expanded to include the 6 MHz timing. Corrected versions of the tables follow.

C10	CPU	Interface	Timing	(Page	298)
-----	-----	-----------	--------	-------	------

			4	MHz	6 1	IHz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes*
1	ТсРС	PCLK Cycle Time	250	4000	165	4000	ns	
2	TwPCh	PCLK Width (High)	105	2000	70	2000	ns	
3	TwPC1	PCLK Width (Low)	105	2000	70	2000	ns	
4	IrPC	PCLK Rise Time		20		10	ns	
5	TFPC	PCLK Fall Time		20		15	ns	
6	TsIA(PC)	INTACK to PCLK + Setup Time	100		100		ns	
7	ThIA(PC)	INTACK to PCLK + Hold Time	0		0		ns	
8	IsIA(RD)	INTACK to RD + Setup Time	200		200		ns	1
9	ThIA(RD)	INTACK to RD + Hold Time	0		0		ns	
10	TsIA(WR)	INTACK to WR + Setup Time	200		200		ns	
11	ThIA(WR)	INTACK to WR + Hold Time	0		0		ns	
12	TsA(RD)	Address to RD + Setup Time	80		80		ns	
13	ThA(RD)	Address to RD + Hold Time	0		0		ns	
14	TsA(WR)	Address to WR + Setup Time	80		80		ns	
15	ThA(WR)	Address to WR + Hold Time	0		0		ns	
16	TsCE1(RD)	CE Low to RD + Setup Time	0		0		ns	1
17	TsCEh(RD)	CE High to RD + Setup Time	100		70		ns	1
18	ThCE(RD)	CE to RD + Hold Time	0		0		ns	1
19	TsCE1(WR)	CE Low to WR + Setup Time	0		0		ns	
20	TsCEh(WR)	CE High to WR + Setup Time	100		70		ns	
21	ThCE(WR)	CE to WR + Hold Time	0		0		ns	
22	TwRD1	RD Low Width	390		250		ns	1
23	TdRD(DRA)	$\frac{RD}{RD}$ + to Read Data Active Delay	0		0		ns	
24	TdRDf(DR)	RD + to Read Data Valid Delay		250		180	ns	
25	TdRDr(DR)	RD + to Read Data Not Valid Delay	0		0		ns	
26	IdRD(DRz)	RD + to Read Data Float Delay		70		45	ns	2
27	TwWR1	WR Low Width	390		250		กร	
28	IsDW(WR)	Write Data to WR ↓ Setup Time	0		0		ns	
29	ThDW(WR)	Write Data to WR + Hold Time	0		0		ns	
30	Irc	Valid Access Recovery Time	1000*	•	650	*	ns	3
		CIO Interrupt Tim	ing					
31	TdPM(INT)	Pattern Match to INT Delay (Bit Port)		2		2	TcPC	
32	TdACK(INT)	ACKIN to INT Delay (Port with Handshake)		10		10	+ns TcPC +ns	4

33 TdCI(INT) Counter Input to INT Delay (Counter Mode) 2 2 To the second	32	cPU 4
34 TdPC(INT) PCLK to INT Delay (Timer Mode) 3 3 Tc	33	cPC
+	34	+ns icPC +ns

CIO Interrupt Acknowledge Timing

36 37 38 39 40 41	TsIA(RDA) TwRDA TdRDA(DR) TdIA(IE0) TdIEI(IE0) TsIEI(RDA) ThIEI(RDA)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	350 350 100 100	250 350 150	250 250 70 70	180 250 100	ns ns ns ns ns ns ns	5 5 5 5
42	TdRDA(INT)	RD ↓ (Acknowledge) to INT + Delay		600		600	ns	

NOTES:

1.	Parameter does not apply to Interrupt
	Acknowledge transactions.
2	Elect delay is measured to the time whe

- Float delay is measured to the time when the output has changed 0.5 V with minimum ac load and maximum dc load.
- Trc is the specified number or 3 TcPC, whichever is longer.
- The delay is from DAV ♦ for 3-Wire Input Handshake. The delay is from DAC ♦ for 3-Wire Output Handshake.
- 5. The parameters for the devices in any

particular daisy chain must meet the following constraint: The delay from INTACK + to RD + must be greater than the sum of TdIA(IEO) for the highest priority peripheral, TsIEI(RDA) for the lowest priority peripheral, and TdIEI(IEO) for each peripheral separating them in the chain.

*Timings are preliminary and subject to change. All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0".

CIO Handshake	Timing	(Page	300)
---------------	--------	-------	------

			4 M	Hz	6 1	Hz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes
1	TsDI(ACK)	Data Input to ACKIN + Setup Time	0		0		ns	
2	ThDI(ACK)	Data Input to ACKIN + Hold Time Strobed Handshake					ns	
3	TdACKf(RFD)	ACKIN + to RFD + Delay	0		0		ns	
4	TwACK1	ACKIN Low WidthStrobed Handshake	0		U		ns	
5	TwACKh	ACKIN High WidthStrobed Handshake					ns	
6	TdRFDr(ACK)	RFD † to ACKIN + Delay	0		0		ns	
7	TsDO(DAV)	Data Out to DAV + Setup Time	25		20		ns	1
8	TdDAVf(ACK)	DAV + to ACKIN + Delay	Ō		0		ns	1
9	ThDO(ACK)	Data Out to ACKIN + Hold Time	2		2		TePC	
0	TdACK(DAV)	ACKIN + to DAV + Delay	2		2		TcPC	
1	ThDI(RFD)	Data Input to RFD + Hold Time	Ō		Ô		ns	
		Interlocked Handshake	0		U		115	
12	TdRFDf(ACK)	RFD + to ACKIN + Delay	0		٥		ns	
		Interlocked Handshake	0		U		115	
3	TdACKr(RFD)	ACKIN + (DAV +) to RFD + Delay	0		n		ns	
		Interlocked and 3-Wire Handshake	•		Ŭ		113	
4	TdDAVr(ACK)	DAV + to ACKIN + (RFD +)Interlocked	0		0		ns	
		and 3-Wire Handshake	0		0		113	
15	TdACK(DAV)	ACKIN + (RFD +) to DAV + Delay	0		0		ns	
		Interlocked and 3-Wire Handshake	-				110	
6	TdDAVIf(DAC)	DAV + to DAC + DelayInput	0		0		ns	
		3-Wire Handshake			U		113	
7	ThDI(DAC)	Data Input to DAC † Hold Time	0		0		ns	
		3-Wire Handshake			0		113	
8	TdDACOr(DAV)	DAC + to DAV + DelayInput	0		0		ns	
		3-Wire Handshake	U		Ū		115	
9	TdDAVIr(DAC)	DAV + to DAC + DelayInput	0		0		ns	
		3-Wire Handshake			Ŭ		113	
20	TdDAVOf(DAC)	DAV + to DAC + DelayOutput	0		0		ns	
		3-Wire Handshake	U		U		113	
1	ThDO(DAC)	Data Output to DAC + Hold Time	2		2		TcPC	
		3-Wire Handshake	-		-		ici c	
2	TdDACIr(DAV)	DAC † to DAV † DelayOutput	2		2		TcPC	
		3-Wire Handshake	-		~			
3	TdDAVOr(DAC)	DAV + to DAC + DelayOutput	0		0		ns	
		3-Wire Handshake	5		0		113	

NOTES:

This time can be extended through the use of deskew timers.
 *Timings are preliminary and subject to change.

All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0".

			4 MHz		6 MHz			
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Not es†
1	TeCI	Counter Input Cycle Time	500		330		ns	
2	TCIh	Counter Input High Width	230		150		ns	
3	TwCI1	Counter Input Low Width	230		150		ns	
4	IfCI	Counter Input Fall Time		20		15	ns	
5	IrCI	Counter Input Rise Time		20		15	ns	
6	⊺sTI(PC)	Trigger Input to PCLK + Setup Time (Timer Mode)					ns	1
7	⊺s⊺I(CI)	Trigger Input to Counter Input ↓ Setup Time (Counter Mode)					ns	1
8	TwTI	Trigger Input Pulse Width (High or Low)					ns	
9	TsGI(PC)	Gate Input to PCLK + Setup Time (Timer Mode)					ns	1
10	TsGI(CI)	Gate Input to Counter Input ↓ Setup Time (Counter Mode)					ns	1
11	ThGI(PC)	Gate Input to PCLK + Hold Time (Timer Mode)					ns	1
12	ThGI(CI)	Gate Input to Counter Input + Hold Time (Counter Mode)					ns	1

			4 M	Hz	6 M	Hz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes*
13	TdPC(CO)	PCLK to Counter Output Delay (Timer Mode)					ns	
14	TdCI(CO)	Counter Input to Counter Output Delay (Counter Mode)					ns	

NOTES:

 These parameters must be met to guarantee trigger or gate are valid for the next counter/timer cycle. *Timings are preliminary and subject to change. All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0".

CIO Request/Wait Timing (Page 303)

			4 M	4 MHz		Hz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes*
1	TdRD(REQ)	RD + to REQ + Delay					ns	
2	TdRD(WAIT)	RD + to WAIT + Delay					ns	
3	TdWR(REQ)	WR + to REQ + Delay					ns	
4	TdWR(WAIT)	WR + to WAIT + Delay					ns	
5	TdPC(REQ)	PCLK ↓ to REQ ↑ Delay					ns	
6	TdPC(WAIT)	PCLK + to WAIT + Delay					ns	
7	TdACK (REQ)	ACKIN + to REQ + Delay					TcPC	1
8	TdACK(WAIT)	ACKIN + to WAIT + Delay					+ns TcPC +ns	1

NOTES:

 The delay is from DAV Imes for 3-Wire Input Handshake. The delay is from DAC Imes for 3-Wire Output Handshake. *Timings are preliminary and subject to change. All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0".

		CIO Reset Timir	ig		
1	TdRD(WR) TdWR(RD)	Delay from RD + to WR + for No Reset Delay from WR + to RD + for No Reset	50 50	50 50	ns
3	TwRES	Minimum Width of RD and WR both Low for Reset	250	250	ns

*Timings are preliminary and subject to change. All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "O".

CIO Miscellaneous Port Timing (Page 304)

			4 14	Hz	6 M	Hz		
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes*
1	IrI	Any Input Rise Time	· · · · · · · · · · · · · · · · · · ·	100		100	ns	
2	IfI	Any Input Fall Time		100		100	ns	
3	Tw1's	1's Catcher High Width	250		170		ns	1
4	TwPM	Pattern Match Input Valid (Bit Port)	750		500		ns	
5	TsPMD	Data Latched on Pattern Match Setup Time (Bit Port)	0		0		ns	
6	ThPMD	Data Latched on Pattern Match Hold Time (Bit Port)	1000		650		កទ	

NOTES:

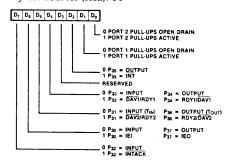
 If the input is programmed inverting, a Low-going pulse of the same width will be detected. *Timings are preliminary and subject to change. All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0".

Z8590 UPC

Product Specification

Page 310

Same as Page 238.


(Page 6) Page 314

(Page 10)

In the **Opcode Map**, Upper Nibble F, Lower Nibbles 0 and 1 should read 8,5 Execution and Pipeline Cycles rather than 6,7.

Page 316 (Page 12)

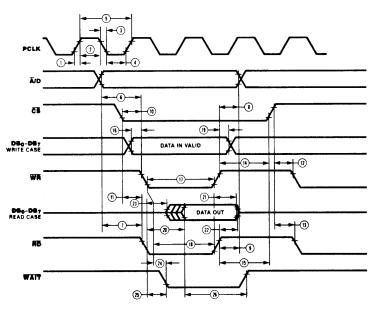
R247 P3M Port 3 Mode Register UPC register address (Hex): F7

Figure 12. Port Mode Registers

Page 320

(Page 16)

The timing tables on this page have been revised and expanded to include the 6 MHz timing. A corrected version of the tables follow.


No.	Symbol	Parameter		MHz Max(ns)		MHz Max(ns)	Notes
1	TrC	Clock Rise Time		20		15	
2	TwCh	Clock High Width	105	1855	70	1855	
3	TfC	Clock Fall Time		20		10	
4	TwC1	Clock Low Width	105	1855	70	1855	
5	TpC	Clock Period	250	2000	165	2000	
6	TsA/D(WR)	Ā/D to WR + Setup Time	80		80		
7	TsA/D(RD)	Ā/D to RD → Setup Time	80		80		
8	ThA/D(WR)	A/D to WR ↑ Hold Time	30		25		
9	ThA/D(RD)	A/D to RD ↑ Hold Time	30		25		
10	TsCSf(WR)	<u>CS</u> + to ₩R + Setup Time	0		0		
11	TsCSf(RD)	CS 🕴 to RD 🔸 Setup Time	0		0		
12	TsCSr(WR)	CS ↑ to WR ↓ Setup Time	60		60		
13	TsCSr(RD)	<u>CS</u> ↑ to_RD ↓ Setup Time	60		60		
14	ThCS(WR)	CS to WR + Hold Time	0		0		
15	ThCS(RD)	CS to RD + Hold Time	0		0		
16	TsDI(WR)	Data in to WR ↓ Setup Time	0		0		
17	Tw(WR)	WR Low Width	390		250		
18	Tw(RD)	RD Low Width	390		250		
19	ThWR(DI)	Data in to WR † Hold Time	0		0		
20	TdRD(DI)	Data Valid from RD + Delay					1
21	ThRD(DI)	Data Valid to RD + Hold Time	0		0		
22	IdRD(DIZ)	Data Bus Float Delay from RD ↑		70		45	
23	$TdRD(DB_{A})$	RD + to Read Data Active Delay	0		0		
24	TdWR(W)	WR + to WAIT + Delay		150		150	
25	TdRD(W)	RD + to WAIT + Delay		150		150	
26 	TdDI(W)	Data Valid to WAIT † Delay	0		0	11 // annakar anna	
		UPC Interrupt Acknowled	ge Transactio	ns			
27	TsACK(RD)	INTACK + to RD + Setup Time	90		80		2
28	TdRD(DI)	RD + to Vector Valid Delay		255		180	
29	ThRD(ACK)	RD + to INTACK + Hold Time	0		0		
30	ThIEI(RD)	IEI to RD + Hold Time	100		100		
31	TwRD1	RD (Acknowledge) Low Width	255		250		
32	TdIEI(IEO)	IEI to IEO Delay		120		100	
33	ŤsIEI(RD)	IEI to RD ↓ Setup Time	150		120		
34	TdACK _f (IEO)	INTACK + to IEO + Delay		250		250	
35	TdACKr(IEO)	INTACK † to IEO † Delay		250		250	
NOTE	S:						

In case where daisy chain is not used. 2.

3. The timing characteristics given reference

*Timings are preliminary and subject to change.

Page 321 (Page 17) In the Master CPU Interface Timing the top trace is incorrect. Lines $\mathsf{DB}_0-\mathsf{DB}_7$ Write Case and $\mathsf{DB}_0-\mathsf{DB}_7$ Read Case have Data In and Data Out Valid reversed. A corrected version of the art follows.

Page 322 (Page 18)

The timing tables on this page have been revised and expanded to include the 6 MHz timing. A corrected version of the tables follow.

		UPC Handshake Timing	(Page 322)				
No.	Symbol	Parameter		MHz) Max(ns)		MHz) Max(ns)	Notes*
1	TsDI(DA)	Data in Setup Time	0		٥		
2	ThDA(DI)	Data in Hold Time	230		230		
3	TwDA	Data Available Width	175		175		1,2
4	TdDAL(RY)	Data Available Low to Ready	20	175	20	175	1,2
		Delay Time	0		0		2,3
5	TdDAH(RY)	Data Available High to Ready		150		150	1,2
		Delay Time	0		0		2,3
6	TdDO(DA)	Data Óut to Data Available Delay Time	50		50		2
7	TdRY(DA)	Ready to Data Available Delay Time	0	205	0	205	2
	- <u> </u>	UPC Reset Timi	ng				
No.	Symbol	Parameter		MHz) Max(ns)	-	MHz) Max(ns)	Notes*
1	TdRDQ(WR)	Delay from RD ↑ to WR ↓ for No Reset	40		35		
2	TdWRQ(RD)	Delay from WR + to RD + for No Reset	50		35		
3	TwRES	Minimum Width of WR and RD both Low for Reset	250		250		4

UPC RAM Version Program Memory Timing

No.	Symbol	Parameter	4 MHz Min(ns) Max(ns)	6 MHz Min(ns) Max(ns)	Notes*
1	TWMAS	Memory Address Strobe Width	60	55	5
2	TdA(MAS)	Address Valid to Memory Address Strobe † Delay	30	30	5
3	TdMR/W (MAS)	Memory Read/Write to Memory Address Strobe † Delay	30	30	5
4	TdMDS(A)	Memory Data Strobe † to Address Change Delay	60	60	
5	TdMDS (MR/W)	Memory Data Strobe † to Memory Read/Write Not Valid Delay	80	75	
6	Tw(MDS)	Memory Data Strobe Width (Write Case)	160	110	6
7	TdDO(MDS)	Data Out Valid to Memory Data Strobe + Delay	30	30	5
8	TdMDS(D0)	Memory Data Strobe † to Data Out Change Delay	3()	30	ś
9	Tw(MDS)	Memory Data Strobe Width (Read Case)	230	230	6
10	TdMDS(DI)	Memory Data Strobe + to Data In Valid Delay	160	130	7
11	TdMAS(DI)	Memory Address Strobe † to Data In Valid Delay	280	220	7
12	ThMDS(DI)	Memory Data Strobe † to Data In Hold Time	Ο	0	
13	TwSY	Instruction Sync Out Width	160	100	
14	TdSY(MDS)	Instruction Sync Out to Memory Data Strobe Delay	200	160	
15	TwI	Interrupt Request via Port 3 Input Width	100	100	

NOTES:

- Input Handshake.
 Test Load 1.
- 3. Output Handshake.
- 4. Internal reset signal is 1/2 to 2 clock from external reset condition.
- 5. Delay times are specified for an input clock frequency of 4 MHz. When operating at a lower frequency, the increase in input clock period must be added to the specified delay time.
- 6. Data strobe width is specified for an input clock frequency of 4 MHz. When operating at a lower frequency, the increase in three input

clock periods must be added to the specified width. Data strobe width varies according to the instruction being executed.

- 7. Address strobe and data strobe to data in valid delay times represent memory system access times and are given for a 4 MHz input frequency.
- 8. All timing references assume 2.0 V for a logic "1" and 0.8 V for a logic "0".
- 9. All output ac parameters use test load 2.
- *Timings are preliminary and subject to change.

Z8 Family of Microcomputers Z8601/Z8602/Z8603 Product Specification

Page 329

Figure 2 should be entitled "Z8601 MCU Pin Assignments."

+ 5 V 🗖	,		40	հ	P3
XTAL2	2		39	Б	P3
XTAL1	3		38	Б	P2
P3, 🗖	4		37	F	P2
P3, 🗖	5		36	Б	P2
AESET	6		35	Б	P2
R/W	7		34	Б	P2
os 🗖	8		33	Б	P2
AS 🗌	9		32	Б	P2
P3, 🗍	10	Z8601	31	Б	P2,
GND	11	MCU	30	Б	P3
P3, 🗖	12		29	ĸ	P3,
P0, 🗖	13		28	Ħ	P1,
P0,	14		27	Ħ	P16
P0, 0	15		26	Ħ	P15
P0, 🗖	16		25	Ħ	P1.
P0,	17		24	Ħ	
P0, 🗋	18			H	P1,
	19		23	H	P12
P0,	20		22	H	P1,
- " L	20		21	μ	P10

Figure 2. Z8601 MCU Pin Assignments

Page 340	In the Opcode Map, Upper Nibble F, Lower Nibbles O and 1 should read 8,5 Execution and Pipeline Cycles rather than 6,7.
Page 342	In External I/O or Memory Read and Write Timing the Minimum value of Number 2 should read 70; the Maximum value of Number 3 should read 360.
Z8 Family of Microcomputers Z8611/Z8612/Z8613 Product Specification	
Page 353	The part number in the photograph should read "Z8613".
Page 358	Same as Page 340 above.
Page 360	Same as Page 342 above.
Z8 Family Z8681 Microcomputers Product Brief	
Pages 366-367 (Page 2)	Switch the titles for Figures 3 and 4.
Page 369	Delete the number "3" from the chapter heading.
Z6132 4K x 8 Quasi-Static RAM Product Specification	
Page 375 (Page 5)	The following changes should be made in the AC Electrical Characteristics table:
	Z6132-3 ⁷ Z6132-4 Z6132-5 Z6132-6 Number Min Max Min Max Min Max (ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns)
	1 750 900 11 -10 -10 -10

In **Power-Up,** the second sentence should read as follows:

15

15 55

55

15 65

15

65

15

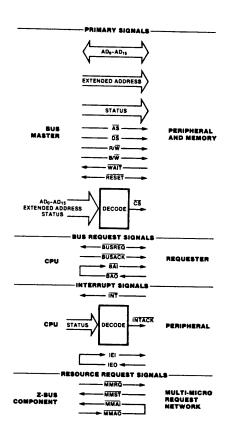
16

15 45

15 45

Page 376 (Page 6)

Moreover, the 6132 requires <u>thirty-two</u> selected or deselected memory cycles before proper operation is attained.


15 75

15 75

Z-BUS Component Interconnect Summary

Page 381

In Figure 1, "Z-BUS Signals," delete CLOCK. A corrected version of the art follows.

Page 383

Delete the <u>Clock</u> entry.

Page 384

Delete the Clock entry in the table.

Delete note #14.

Insert after note #13:

L = No connection

Delete all **Bus Requests** text and Figure 7, "Bus Request Protocol." Add the following text and corrected art:

BUS REQUESTS

Figure 6a shows how the bus request lines connect bus requesters and the CPU on a Z-BUS. Figure 7 shows the states of the bus request mechanism as the Z-BUS is acquired, used, and released.

To generate transactions on the bus, a bus requester must gain control of the bus by making a bus request. This is done by pulling down $\overline{\text{BUSREQ}}$. A bus request can be made in either of two cases:

- o BUSREQ is initially High and BAI is High, indicating that the bus is controlled by the CPU and no other requester is requesting the bus.
- BAI is High and the requester had wanted to request the bus at the time of the last Low to High transition of BUSREQ. This insures that a module will not be locked out indefinitely by a higher priority bus requester.

After $\overline{\text{BUSREQ}}$ is pulled Low, the Z-BUS CPU relinquishes the bus and indicates this condition by making $\overline{\text{BUSACK}}$ Low. The Low on $\overline{\text{BUSACK}}$ is propagated through the $\overline{\text{BAI}}/\overline{\text{BAO}}$ daisy chain (Figure 6a). BAI follows BAO for components not requesting the bus, and any component requesting the bus holds its $\overline{\text{BAO}}$ High, thereby locking out all lower priority requesters. A bus requester gains control of the bus when its $\overline{\text{BAI}}$ input goes Low. When it is ready to relinquish the bus, it stops pulling $\overline{\text{BUSREQ}}$ Low and allows BAO to follow $\overline{\text{BAI}}$. This permits lower priority devices that made simultaneous requests to gain control of the bus. When all simultaneously requesting devices have relinquished the bus, and the Low on $\overline{\text{BAI}}/\overline{\text{BAO}}$ has propagated to the lowest priority requester, $\overline{\text{BUSREQ}}$ goes High, returning control of the bus to the CPU.

The CPU responds to the High on $\overline{\text{BUSREQ}}$ by driving $\overline{\text{BUSACK}}$ High. The High on $\overline{\text{BUSACK}}$ is propagated down the $\overline{\text{BAI}/\text{BAO}}$ daisy chain, thus allowing bus requesters to make new bus requests. Because high priority bus requesters can pull $\overline{\text{BUSREQ}}$ Low before low priority devices have a High on $\overline{\text{BAI}}$, a way is needed for low priority devices to request the bus when $\overline{\text{BUSREQ}}$ is Low. That is provided by the rule that a requester may request the bus if $\overline{\text{BAI}}$ is High and it had wanted the bus at the time the last Low to High transition on $\overline{\text{BUSREQ}}$.

As soon as $\overline{\text{BUSREQ}}$ is pulled <u>Low</u> by any requester, each of the other requesters on the bus drives $\overline{\text{BUSREQ}}$ Low and continues to do so until it drives its $\overline{\text{BAO}}$ output Low. This provides a handshake between the CPU and the bus requesters by insuring that $\overline{\text{BUSREQ}}$ will not go High until the CPU's acknowledgement of $\overline{\text{BUSACK}}$ has reached every requester. Bus requesters can therefore run asynchronously to the CPU. This rule also allows the bidirectional $\overline{\text{BUSREQ}}$ line to be buffered using the logic shown in Figure 6b. This logic is similar to the logic inside a bus requester that keeps $\overline{\text{BUSREQ}}$ Low when it has initially been pulled Low by a different requester.

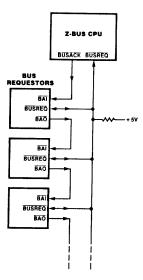


Figure 6a. Bus Request Connections

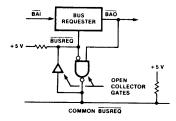


Figure 6b. Bus Request Line Buffering

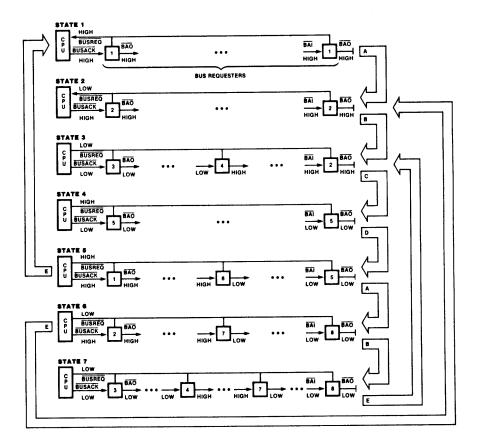


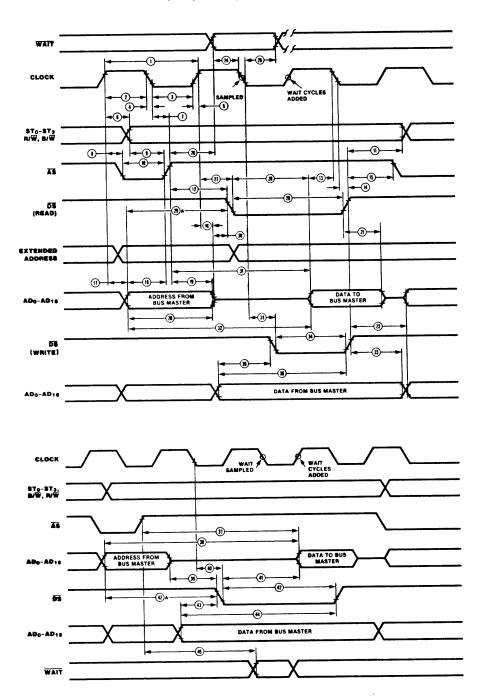
Figure 7. Bus Request Mechanism States

BUS	STA	ΤE	LEGEND
-----	-----	----	--------

- 1. The CPU owns the bus and no one is requesting it.
- 2. A bus requester has requested the bus by pulling $\overline{\text{BUSREQ}}$ Low, but the CPU has not responded.
- 3. A Low from the CPU's BUSACK is propagating down the BAI/BAO daisy chain. Bus requesters are using the bus.
- 4. The Low from BUSACK has propagated to the end of the daisy chain causing all bus requesters to release BUSREQ, which floats High. The CPU has not yet acknowledged return of the bus.
- 5. The CPU acknowledges the High on BUSREQ with a High on BUSACK which propagated down the BAI/BAD daisy chain.
- Some device whose BAI input is High requests the bus by pulling BUSREQ Low. The CPU has not yet responded with a Low on BUSACK.
- 7. The CPU has responded to a Low on $\overline{\text{BUSACK}}$ with a Low on $\overline{\text{BUSACK}}$. The previous High state on $\overline{\text{BUSACK}}$ is still propagating down the $\overline{\text{BAI}/\text{BAO}}$ daisy chain.

TRANSITION LEGEND

- A. A bus requester requests the bus by pulling down on BUSREQ.
- B. The CPU responds to BUSREQ by pulling down BUSACK.
- C. The Low from $\overline{\text{BUSACK}}$ propagates to the end of the $\overline{\text{BAI}/\text{BAO}}$ daisy chain, causing all the bus requesters to let $\overline{\text{BUSREQ}}$ rise.
- D. The CPU responds to BUSREQ High by driving BUSACK High.
- E. The High from $\overline{\text{BUSREQ}}$ propagates to the end of the $\overline{\text{BAI}/\text{BAO}}$ daisy chain.


BUS REQUESTER LEGEND

- 1. Requester does not want bus and is not pulling BUSREQ Low.
- Requester may or may not want bus; it is pulling BUSREQ Low in either case.
- 3. Requester is not pulling $\overline{\text{BUSREQ}}$ Low; if it wants control of the bus, it must wait for $\overline{\text{BUSREQ}}$ and $\overline{\text{BAI}}$ to rise before requesting the bus.
- 4. Requester is either using the bus or propagating the Low on its BAI input. It will stop driving BUSREQ when its BAO output goes Low. If its wants to use the bus, but did not want to at the time BUSREQ and BAI were last High or BUSREQ went from Low to High, then it must wait for BUSREQ and BAI to rise before requesting and using the bus.
- 5. Requester is not pulling BUSREQ Low. If it wants to use the bus, it must wait for its BAI to become High before requesting the bus.
- Requester is propagating the High on its BAI input. If it wants the bus it will pull BUSREQ Low.
- 7. Requester is propagating the High on its BAI input.
- 8. Requester is not pulling BUSREQ Low. If it wanted the bus at the time BUSREQ went from Low to High, it may request the bus when its BAI input rises; otherwise if it wants the bus, it must wait for BUSREQ to rise.

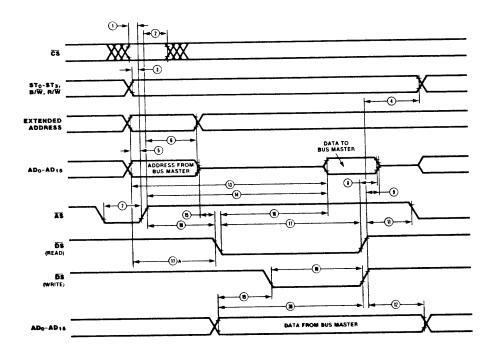
Figure 7 (continued). Bus Request Mechanism States

Page 392

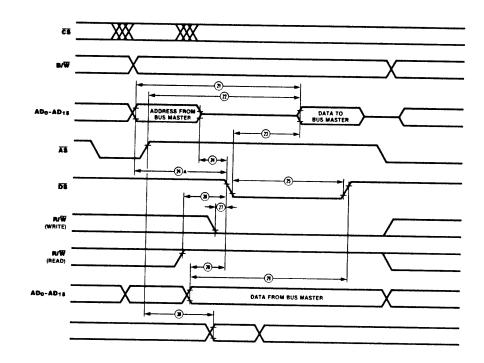
The **Bus Master Timing** and I/O **Transaction Timing** diagrams lack parameters 29A and 42A, respectively. Corrected versions of the art follow.

50

No.	Symbol	Parameter		MHz Max(ns)		MHz Max(ns)	Note
		All Transactions					•
1	TpC	Clock Period	250	2000	165	2000	
2	TwCh	Clock High Width	105		70	2000	
3 4	TwC1	Clock Low Width	105		70		
	IfC	Clock Fall Time		20		10	
5 6	TrC	Clock Rise Time		20		15	
7	TdC(S)	Clock 🛧 to Status Valid Delay		110		85	
8	TdC(ASr) TdC(ASf)	Clock + to AS + Delay		90		80	
9	TdS(AS)	Clock \uparrow to $\overline{AS} \downarrow$ Delay		80		60	
	TwAS	Status Valid to AS + Delay	50		30		
11	TdDS(S)	AS Low Width	80		55		
	TdAS(DS)	DS + to Status Not Valid Delay AS ↑ to DS + Delay	75		55		
	TsDR(C)	AS I to US Y Delay Read Data to Club C to Th	80	2095	55		3
	TdC(DS)	Read Data to Clock↓ Setup Time Clock ↓ to DS ↑ Delay	30		20		
	TdDS(AS)	DS + to AS + Delay		70		65	
	TdC(Az)		70		35		
	TdC(A)	Clock † to Address Float Delay Clock † to Address Valid Delay		65		55	
	TdA(AS)	Address Valid to AS ↑ Delay		100		75	
	TdAS(A)	AS † to Address Not Valid Delay	50		35		1
	TwA	Address Valid Width	70		45		1
	ThDR(DS)	Read Data to DS + Hold Time	150		85		
22	TdDS(A)	\overline{DS} \uparrow to Address Active Delay	0		0		
	TdDS(DW)	\overline{DS} \uparrow to Write Data Not Valid Delay	80 50		45		
	TsW(C)	WAIT to Clock + Setup Time			45		
25	ThW(C)	WAIT to Clock + Hold Time	50 10		30 10		2,5
					10		2,5
	x (1.1)	Memory Transaction	8				
	TdAS(W)	AS † to WAIT Required Valid		90		45	
		Clock + to DS (Read) + Delay		120		85	
	TdDSR(DR)	DS (Read) + to Read Data Required Valid		200		130	
	TwDSR TdA(DS)	DS (Read) Low Width		250	185		
	TdAz(DS)	Address Valid to \overline{DS} + Delay	180		110		
	TdAS(DR)	Address Float to DS (Read) + Delay	0		0		
	TdA(DR)	AS † to Read Data Required Valid		360		220	
	TdC(DSW)	Address Valid to Read Data Required Valid Clock + to DS (Write) + Delay		410		305	
	TwDSW	DS (Write) Low Width	440	95		80	
	TdDW(DSWf)	Write Data Valid to \overline{DS} (Write) + Delay	160		110		
	TdDW(DSWr)	Write Data Valid to DS (Write) + Delay	50 230		35		
			2,0		195		
37		I/O Transactions					
	ſdAS(DR) ſdA(DR)	AS + to Read Data Required Valid		610		385	
	IdA(DR) IdAz(DSI)	Address Valid to Read Data Required Valid		660		470	
	IdC(DSI)	Address Float to DS (I/O) + Clock + to DS (I/O) +	0		0		
	IdDSI(DR)			120		90	
	WDSI	DS (I/O) ↓ to Read Data Required Valid DS (I/O) Low Width		330		210	
-	dA(DSI)	Address Valid to \overline{DS} (1/0) () :	400		255		
	dDW(DSIf)	Address Valid to \overline{DS} (I/O) + Delay	180		110		
	dDW(DSIr)	Write Data to \overline{DS} (I/O) + Delay	50		35		
	dAS(W)	Write Data to DS (I/O) ↑ Delay AS ↑ to WAIT Required Valid	480		320		
		ag t lu wall Kenuired Valid		340		210	


Z-BUS Bus Master Timing Parameters (Page 393)

No.	Symbol	Parameter	4 MHz Min(ns) Max(ns	6 MHz 3) Min(ns) Max(ns)	Notes
		Interrupt-Acknowledge Tr	ansactions		
46 47 48	TdAS(DSA) TdC(DSA) TdDSA(DR)	AS + to DS (Acknowledge) + Delay Clock + to DS (Acknowledge) + Delay DS (Acknowledge) + to Read Data Required	960 120 455		
49 50 51	TwDSA TdAS(W) TdDSA(W)	Valid DS (Acknowledge) Low Width AS ↑ to Wait Required Valid DS (Acknowledge) ↓ to Wait Required Vali	485 840 d 185		
NOTE 1. 2.	Timing for however, ex least as so and must re addresses a The exact of depends on	tended addresses must be valid at ion as addresses are valid on ADD-AD15	apply to Inter 4. Except where o and fall times 5. The setup and clock must be asynchronously	lue for TdAS(DS) does rupt-Acknowledge Tran therwise stated, maxi s for inputs are 200 n hold times for WAIT t met. If WAIT is gene / to the clock, it mus pefore input to a bus	sactions mum rise s. o the rated t be


Page 394

to the clock.

Add to the **Memory and Peripheral Timing** and **I/O Transaction Timing** diagrams parameters 17A and 24A, respectively. A corrected version of these diagrams follows.

52

Page 395

A corrected version of Memory and Peripheral Timing Parameters follows.

Z-BUS Memory and Peripheral Timing Parameters (Page 395)

No.	Symbol	Parameter		MHz) Max(ns)		MHz	
		All Transactio			min(ns,) Max(ns)	Note
1	TsCS(AS)	CS to AS ↑ Setup Time				······	
2	ThCS(AS)	CS to AS + Hold Time	0		0		1
3	TsS(AS)	Status to AS + Setup Time	60		40		1
4	ThS(DS)	Status to DS + Hold Time	20		0		2
5	TsA(AS)	Address to AS + Setup Time	55		40		
6	ThA(AS)		30		10		1
7	TwAS	Address to AS ↑ Hold Time AS Low Width	50		30		1
8	TdDS(DR)		70		50	0	
9	TdDS(DRz)	DS + to Read Data Not Valid Delay	0				
10	TdAS(DS)	DS † to Read Data Float Delay		70	45		
11	TdDS(AS)	AS + to DS + Delay	60	2095	40		5
12		DS ↑ to AS ↓ Delay	50		25		
	ThDW(DS)	Write Data to DS ↑ Hold Time	30		20		1
		Memory Transactio	กร				
13	TdA(DR)	Address Required Valid to Read Data Valid	Delay	320	· · · · · · · · · · · · · · · · · · ·	255	
14	TdAS(DR)	AS ↑ to Read Valid Delay	,	270		170	
15	TdAz(DSR)	Address Float to DS (Read) + Delay	D	-	0	170	
16	TdDSR(DR)	DS (Read) + to Read Data Valid Delay	0	110	U	80	
17	TwDSR	DS (Read) Low Width	240	110	180	00	
	IdA(DS)	Address to DS + Setup	160		100		
18	TwDSW	DS (Write) Low Width	150		100		
19	TsDW(DSWf)	Write Data to DS (Write) ↓ Setup Time	30		20		
20	TsDW(DSWr)	Write Data to DS (Write) † Setup Time	210		20 180		

Z-BUS Memory and Peripheral Timing Parameters (Page 395)

No.	Symbol	Parameter		4 Min(ns)		6 MHz Min(ns) Max	(ns)	Notes
		I/O Tr	ansactions					
	TdA(DR)	Address Required Valid to Read Da	ta Valid D	elay	570 520		420 335	
22 23	TdAS(DR) TdDSI(DR)	AS ↑ to Read Data Valid Delay DS (I/O) + to Read Data Valid Del	av		250		180	
	IdAz(DSI)	Address Float to \overline{DS} (I/O) + Delay		0		0		
	TdA(DSI)	Address to DS (I/O) + Setup		160		100		
5	TwDSI	DS (I/O) Low Width		390		250		
6	TsRWR(DSI)	R/\overline{W} (Read) to \overline{DS} (I/O) + Setup Ti	me	100		100		
7	TsRWW(DSI)	R/W (Write) to DS (I/O) ↓ Setup T		0 30		0 20		
8	TsDW(DSIf)	Write Data to \overline{OS} (I/O) + Setup Ti		460		305		
9	TsDW(DSIr)	Write Data to DS (I/O) + Setup Ti	me	195		160		
0	TdAS(W)	AS ↑ to WAIT Valid Delay						
		Interrupt-Ackno	wledge Tra	insactions				
1	TsIA(AS)	INTACK to AS + Setup Time		0		0		
2	ThIA(AS)	INTACK to AS + Hold Time		250		250		
3	TdAS(DSA)	AS ↑ to DS (Acknowledge) ↓ Delay		940		675		
4	TdDSA(DR)	DS (Acknowledge) + to Read Delay	Valid Dela	ay 365		245 310		
5	TwDSA	DS (Acknowledge) Low Width		475		210		3,4
6	TdAS(IEO)	AS ↓ to IEO ↓ Delay						4
7	TdIEIf(IEO) TsIEI(DSA)	IEI to IEO Delay IEI to DS (Acknowledge) + Setup T	ime					4
4.	Applies only INT Low at t Acknowledge These parame parameters f daisy chain	er R/W for I/O Transactions. to a peripheral which is pulling the beginning of the Interrupt Transaction. eters are device dependent. The for the devices in any particular must meet the following constraint peripherals in the daisy chain,	a t 5. T t 6. E	nd TdIEIf(hem in the he maximum o Interrup xcept when	IEO) for daisy ch value fo A Acknowl e stated	ower priority each periphen ain. r TdAS(DS) do edge Transact otherwise, ma s are 200 ns	ral sep Des not tions. aximum	arating apply
	RMB RAM Memor uct Descripti							
ge	451	In Ordering Informat	ion the Pa	ırt Number	for the	Z80 RMB/32 32K RAM Me		oard
		should read:						
		05-0104-00.						
sk	MDC Z80 Memor Controller B uct Descripti	oard						
		In Ordening Informat	ion the P	art Number	for the	780 MDC/32	2	

Page 469

In Ordering Information the Part Number for the

Z80 MDC/32 32K Memory and Disk Controller

should read:

05-6209-00.

Page 471

Delete Zilog before Development Systems.

	Page 499	Delete the 7 LINK arts and in the state
	y	Delete the Z-LINK entry and insert the following:
-		Linker. ZLINK links assembled modules into a single-load module. ZLINK resolves any external references between separately assembled modules, so that the load module produced is relocatable. It also allows the reordering and combining of named sections between modules. ZLINK permits a symbolic specification of the program entry point in the Command line and, on request, produces a detailed map for program documentation.
		Delete the LOAD/SEND heading and substitute Program Transfer.
		Delete the Z-PROG heading and substitute PROM PROGRAMMING.
		Add to the Description of Part No. 07-3363-02 the following:
		Prerequisites PDS 8000 Series ZDS 1/40 or 1/25 MCZ-1 Series RIO
~	Z8000 Software Development Package Product Description	
	Page 501	In Overview the first two sentences should read:
		The Z8000 Software Development Package consists of five utility programs which aid and simplify the development of Z8000 programs. PLZ/ASM from Zilog's PLZ family bring all the advantages of modular
		programming to the Z8000 software developer and ensure transportability to future processors.
		programming to the Z8000 software developer and ensure
		programming to the 28000 software developer and ensure transportability to future processors.
		programming to the Z8000 software developer and ensure transportability to future processors. Delete the hyphen in "Z-PROG" in sentence 3. Delete the LINKER text and substitute the LINKER text from page 499 in this
		programming to the Z8000 software developer and ensure transportability to future processors. Delete the hyphen in "Z-PROG" in sentence 3. Delete the LINKER text and substitute the LINKER text from page 499 in this DCN.
		<pre>programming to the Z8000 software developer and ensure transportability to future processors. Delete the hyphen in "Z-PROG" in sentence 3. Delete the LINKER text and substitute the LINKER text from page 499 in this DCN. In Imager sentences one, two and three should read: The IMAGER accepts multiple linked object files from ZLINK and translates them into absolute code. IMAGER can then either store the absolute code in a disk file or leave it in system memory. IMAGER</pre>
		<pre>programming to the Z8000 software developer and ensure transportability to future processors. Delete the hyphen in "Z-PROG" in sentence 3. Delete the LINKER text and substitute the LINKER text from page 499 in this DCN. In Imager sentences one, two and three should read: The IMAGER accepts multiple linked object files from ZLINK and translates them into absolute code. IMAGER can then either store the absolute code in a disk file or leave it in system memory. IMAGER supports segmented and nonsegmented code.</pre>

Prerequisites PDS 8000 Series ZDS 1/40 MCZ-1 Series RIO

Page 503

Change Page Heading to:

Z8000™ Cross-Software Package Version II

Page 504

In Product Description, paragraph 2, the third sentence should read:

The C compiler presently generates both segmented and nonsegmented code.

In Ordering Information, the Part Number should read:

06-0086-01.

Under Software (continued) the sentence should read:

All software is distributed on one reel of magnetic tape recorded at 1600 BPI.

.

Under Documentation delete the second and third entries.

Zilog Sales Offices

West

Sales & Technical Center Zilog, Incorporated 1315 Dell Avenue Campbell, CA 95008 Phone: (408) 446-4666 TWX: 910-338-7621

Sales & Technical Center Zilog, Incorporated 18023 Sky Park Circle Suite J Irvine, CA 92714 Phone: (714) 549-2891 TWX: 910-595-2803

Sales & Technical Center Zilog, Incorporated 15643 Sherman Way Suite 430 Van Nuys, CA 91406 Phone: (213) 989-7485 TWX: 910-495-1765

Sales & Technical Center Zilog, Incorporated 2918 N. 67th Place #2 Scottsdale, AZ 85251 Phone: (602) 990-1977

Sales & Technical Center Zilog, Incorporated 1750 112th Ave. N.E. Suite D161 Bellevue, WA 98004 Phone: (206) 454-5597

Midwest

Sales & Technical Center Zilog, Incorporated 890 East Higgins Road Suite 147 Schaumburg, IL 60195 Phone: (312) 885-8080 TWX: 910-291-1064

Sales & Technical Center Zilog, Incorporated 28349 Chagrin Blvd. Suite 109 Woodmere, OH 44122 Phone: (216) 831-7040 FAX: 216-831-2957

South

Sales & Technical Center Zilog, Incorporated 2711 Valley View, Suite 103 Dallas, TX 75234 Phone: (214) 243-6550 TWX: 910-860-5850

Zilog, Incorporated 7113 Burnet Rd. Suite 207 Austin, TX 78757 Phone: (512) 453-3216

Technical Center Zilog, Incorporated 1442 U.S. Hwy 19 South Suite 135 Clearwater, FL 33516 Phone: (813) 535-5571

East

Sales & Technical Center Zilog, Incorporated Corporate Place 99 South Bedford St. Burlington, MA 01803 Phone: (617) 273-4222 TWX: 710-332-1726

Sales & Technical Center Zilog, Incorporated 110 Gibraltar Road Horsham, PA 19044 Phone: (215) 441-6282 TWX: 510-665-7077

Sales & Technical Center Zilog, Incorporated 240 Cedar Knolls Rd. Cedar Knolls, NJ 07927 Phone: (201) 540-1671

Zilog Sales 3300 Buckeye Rd. Suite 401 Atlanta, GA 30341 Phone: (404) 451-8425

United Kingdom

Zilog (U.K.) Limited Babbage House, King Street Maidenhead SL6 1DU Berkshire, United Kingdom Phone: (628) 36131 Telex: 848609

France

Zilog, Incorporated Tour Europe Cedex 7 92080 Paris La Defense France Phone: (1) 788-14-33 TWX: 611445F

West Germany

Zilog GmbH Zugspitzstrasse 2a D-8011 Vaterstetten Munich, West Germany Phone: 08106 4035 Telex: 529110 Zilog d.

Japan

Zilog, Japan KK TBS Kaikan Bldg. 3-3 Akasaka 5-Chome Minato-Ku, Tokyo 107 Phone: (03) 587-0528 Telex: ESSOEAST J22846

Printed in USA

Telephone (408) 446-4666 TWX 910-338-7621